Math 436 Fall 2012 Homework 6

Due Dec. 4 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 3.22. Construct a sequence $f_{n}(x) \longrightarrow 0$ for every $x \in \mathbb{R}$, but $\left\|f_{n}\right\|=$ $\left(\int_{\mathbb{R}} f(x)^{2} \mathrm{~d} x\right)^{1 / 2}=1$ for all n.
- Ex. 3.23. Let V be a linear vector space. A norm $\|\cdot\|$ is a mapping $V \mapsto \mathbb{R}$ satisfying
a) For any $v \in V,\|v\| \geqslant 0$, and $\|v\|=0 \Longleftrightarrow v=0$.
b) For any $v \in V$ and $a \in \mathbb{R},\|a v\|=|a|\|v\|$.
c) For any $u, v \in V,\|u+v\| \leqslant\|u\|+\|v\|$.

Prove that

$$
\begin{equation*}
\|v\|:=\sup _{x \in[a, b]}|f(x)| \tag{1}
\end{equation*}
$$

is a norm on $V=\{f(x):[a, b] \mapsto \mathbb{R} \mid f(x)$ is bounded $\}$. Then show that this norm does not come from an inner product, that is there can be no inner product that $\|v\|^{2}=(v, v)$. (Hint: Show that if (\cdot, \cdot) is an inner product, then $(u+v, u+v)+(u-v$, $u-v)=2(u, u)+2(v, v)$.)

- Ex. 4.4. Consider the linear ODE system

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A(t) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\boldsymbol{x}_{0} . \tag{2}
\end{equation*}
$$

Explain why in general
is not a solution.

$$
\begin{equation*}
\exp \left[\int_{0}^{t} A(s) \mathrm{d} s\right] \boldsymbol{x}_{0} \tag{3}
\end{equation*}
$$

- Ex. 4.5. Analyze the well/ill-posedness of

$$
\begin{equation*}
u_{x x}+u_{t t}+u_{t}=0 \tag{4}
\end{equation*}
$$

using normal modes analysis.

