Math 436 Fall 2012 Homework 5

Due Nov. 22 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 3.11. Write the following equations into S-L form and discuss whether they are regular or singular. Determine what is the orthogonality relation their eigenfunctions should satisfy.
a) Legendre's equation:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad-1<x<1 \tag{1}
\end{equation*}
$$

b) Chebyshev's equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\lambda y=0, \quad-1<x<1 \tag{2}
\end{equation*}
$$

c) Laguerre's equation

$$
\begin{equation*}
x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0, \quad 0<x<\infty \tag{3}
\end{equation*}
$$

d) Hermite's equation

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad-\infty<x<\infty \tag{4}
\end{equation*}
$$

e) Bessel's equation of order n

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda x^{2}-n^{2}\right) y=0, \quad 0<x<1 \tag{5}
\end{equation*}
$$

- Ex. 3.12. Give any second order equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0 \tag{6}
\end{equation*}
$$

Prove that there exists a multiplier $h(x)$ such that

$$
\begin{equation*}
h(x)\left[a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y\right]=\left(p(x) y^{\prime}\right)^{\prime}+q(x) y . \tag{7}
\end{equation*}
$$

Note that the term of first order derivative disappears.

- Ex. 3.13. Consider the S-L problem

$$
\begin{equation*}
\left(p y^{\prime}\right)^{\prime}+q y+\lambda y=0, \quad a<x<b, \quad y(a)=0, y(b)=0 \tag{8}
\end{equation*}
$$

Show that if $p(x) \geqslant 0, q(x) \leqslant M$, then any eigenvalue $\lambda \geqslant-M$.

- Ex. 3.17. Prove that the Green's function $G(x, \xi)$ as defined in the notes is symmetric: $G(x, \xi)=G(\xi, x)$. (Hint: Show that $p\left[y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}\right]$ is constant).
- Ex. 3.19. Let K be defined as

$$
\begin{equation*}
K f:=\int_{a}^{b} k(x ; \xi) f(\xi) \mathrm{d} \xi \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
k(x ; \xi)=r(x)^{1 / 2} G(x ; \xi) r(\xi)^{1 / 2} \tag{10}
\end{equation*}
$$

with $G(x ; \xi)$ the Green's function for the operator

$$
\begin{equation*}
-\left(p y^{\prime}\right)^{\prime}+q y \text { with boundary condition } y(a)=y(b)=0 \tag{11}
\end{equation*}
$$

in the sense that the solution to

$$
\begin{equation*}
-\left(p y^{\prime}\right)^{\prime}+q y=f, \quad y(a)=y(b)=0 \tag{12}
\end{equation*}
$$

is given by

$$
\begin{equation*}
y(x)=\int_{a}^{b} G(x ; \xi) f(\xi) \mathrm{d} \xi \tag{13}
\end{equation*}
$$

Assume $p, q, r>0$. Show that K is a non-negative operator, that is $(K z, z)$: $=\int_{a}^{b}[K z] z \mathrm{~d} x \geqslant 0$ for all continuous functions z.

