## Math 436 Fall 2012 Homework 4 Solutions

## Due Nov. 8 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Exercise 3.1. Consider the Telegrapher's equation

$$
\begin{equation*}
u_{x x}=u_{t t}+\lambda u_{t} \tag{1}
\end{equation*}
$$

(recall that $\lambda>0$ ) over the interval $x \in[0, L]$ subject to conditions

$$
\begin{equation*}
u(0, t)=u(L, t)=0 ; \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=h(x) . \tag{2}
\end{equation*}
$$

Use the method of separation of variables to study the limiting behavior of $u$ as $t \longrightarrow \infty$.
Solution. We separate the variables: Substitute $X(x) T(t)$ into the equation:

$$
\begin{equation*}
T(t) X^{\prime \prime}(x)=T^{\prime \prime}(t) X(x)+\lambda T^{\prime}(t) X(x) \tag{3}
\end{equation*}
$$

Divide both sides by $X(x) T(t)$ we get

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{T}+\lambda \frac{T^{\prime}}{T}=c^{2} K \tag{4}
\end{equation*}
$$

Thus we get the eigenvalue problem:

$$
\begin{equation*}
X^{\prime \prime}-K X=0, \quad X(0)=X(L)=0 \tag{5}
\end{equation*}
$$

and the equation for $T$ :

$$
\begin{equation*}
T^{\prime \prime}+\lambda T^{\prime}-K T=0 \tag{6}
\end{equation*}
$$

We solve the eigenvalue problem to obtain

$$
\begin{equation*}
K_{n}=-\left(\frac{n \pi}{L}\right)^{2}, \quad X_{n}=\sin \frac{n \pi x}{L}, \quad n=1,2,3, \ldots \tag{7}
\end{equation*}
$$

Now we expand
where

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} f_{n} \sin \frac{n \pi x}{L}, \quad h(x)=\sum_{n=1}^{\infty} h_{n} \sin \frac{n \pi x}{L} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
f_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} \mathrm{~d} x, \quad h_{n}=\frac{2}{L} \int_{0}^{L} h(x) \sin \frac{n \pi x}{L} \mathrm{~d} x . \tag{9}
\end{equation*}
$$

Next we solve the $T_{n}$ equation:

$$
\begin{equation*}
T_{n}^{\prime \prime}+\lambda T_{n}^{\prime}+\left(\frac{n \pi}{L}\right)^{2} T_{n}=0 \tag{10}
\end{equation*}
$$

Its auxiliary equation is

$$
\begin{equation*}
r^{2}+\lambda r+\left(\frac{n \pi}{L}\right)^{2}=0 \Longrightarrow r_{1,2}=\frac{-\lambda \pm \sqrt{\lambda^{2}-4\left(\frac{n \pi}{L}\right)^{2}}}{2} \tag{11}
\end{equation*}
$$

Now it is clear that $\Re r_{1,2}<0$ for all possible values of $\lambda$. As a consequence the solution would read

$$
\begin{equation*}
u(x, t)=\sum e^{-\alpha_{n} t}\left[a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right] \tag{12}
\end{equation*}
$$

with all $\alpha_{n}>0$. Therefore $u(x, t) \longrightarrow 0$ as $t \longrightarrow \infty$.
(To Cody: The following is not required)
More specifically, we have

- If $\lambda<\frac{2 \pi}{L}$, then $\lambda^{2}-4\left(\frac{n \pi}{L}\right)^{2}<0$ for all $n \in \mathbb{N}$. Consequently the real part of all $\alpha_{n}$ is $-\frac{\lambda}{2}$. Thus $u(x, t) \longrightarrow 0$ like $e^{-\lambda t / 2}$.
- If $\lambda=\frac{2 \pi}{L}, u(x, t) \longrightarrow 0$ like $e^{-\lambda t / 2} t$ (since now we have a repeated root).
- If $\lambda>\frac{2 \pi}{L}$, then

$$
\begin{equation*}
\Re \alpha_{n} \geqslant \frac{-\lambda+\sqrt{\lambda^{2}-4\left(\frac{\pi}{L}\right)^{2}}}{2} \tag{13}
\end{equation*}
$$

$$
\text { which means } u(x, t) \longrightarrow 0 \text { like } \exp \left[\frac{-\lambda+\sqrt{\lambda^{2}-4\left(\frac{\pi}{L}\right)^{2}}}{2} t\right] \text {. }
$$

- Exercise 3.5. Consider the boundary value problem for $u(x, y)$ in the annular region:

$$
u_{x x}+u_{y y}=0 \quad \rho^{2}<x^{2}+y^{2}<1 ; \quad u(x, y)= \begin{cases}f & x^{2}+y^{2}=\rho^{2}  \tag{14}\\ g & x^{2}+y^{2}=1\end{cases}
$$

Obtain the formula for the solution using separation of variables.
Solution. The solution process is identical to that of Laplace equation in the disc untile we need to solve the $R$ equation:

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0, \quad R\left(\rho_{1}\right)=f_{n i}, \quad R\left(\rho_{2}\right)=g_{n i} . \tag{15}
\end{equation*}
$$

Here $f_{n i}, g_{n i}$ comes from expansions

$$
\begin{equation*}
f(\theta)=\sum_{n=0}^{\infty}\left[f_{n 1} \cos n \theta+f_{n 2} \sin n \theta\right], \quad g(\theta)=\sum_{n=0}^{\infty}\left[g_{n 1} \cos n \theta+g_{n 2} \sin n \theta\right] . \tag{16}
\end{equation*}
$$

When $n=0$, the general solution is

$$
\begin{equation*}
R(r)=C_{1}+C_{2} \log r \tag{17}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
C_{1}+C_{2} \log \rho=f_{0 i}, \quad C_{1}=g_{0 i} . \tag{18}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
C_{2}=\left(f_{0 i}-g_{0 i}\right) /(\log \rho), \quad C_{1}=g_{0 i} . \tag{19}
\end{equation*}
$$

When $n>0$ the general solution is

$$
\begin{equation*}
R(r)=C_{1} r^{n}+C_{2} r^{-n} . \tag{20}
\end{equation*}
$$

Then the boundary conditions lead to

$$
\begin{equation*}
C_{1} \rho^{n}+C_{2} \rho^{-n}=f_{n i}, \quad C_{1}+C_{2}=g_{n i} . \tag{21}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
C_{1}=\frac{f_{n i} \rho^{n}-g_{n i}}{\rho^{2 n}-1}, \quad C_{2}=\rho^{n} \frac{g_{n i} \rho^{n}-f_{n i}}{\rho^{2 n}-1} . \tag{22}
\end{equation*}
$$

Therefore the solution to the problem is

$$
\begin{align*}
& u(r, \theta)=\left[g_{01}+\frac{f_{01}-g_{01}}{\log \rho}\right]+\sum_{n=1}^{\infty}\left[\left(\frac{f_{n 1} \rho^{n}-g_{n 1}}{\rho^{2 n}-1} r^{n}+\left(\frac{\rho}{r}\right)^{n} \frac{g_{n 1} \rho^{n}-f_{n 1}}{\rho^{2 n}-1}\right) \cos (n \theta)+\right. \\
& \left.\left(\frac{f_{n 2} \rho^{n}-g_{n 2}}{\rho^{2 n}-1} r^{n}+\left(\frac{\rho}{r}\right)^{n} \frac{g_{n 2} \rho^{n}-f_{n 2}}{\rho^{2 n}-1}\right) \sin (n \theta)\right] . \tag{23}
\end{align*}
$$

- Exercise 3.8. Consider the equation

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda r^{2}-n^{2}\right) R=0, \quad R(0), R^{\prime}(0) \text { bounded, } R(1)=0 \tag{24}
\end{equation*}
$$

a) Prove that there are no negative eigenvalues (along the way you will see why the boundedness of $R^{\prime}(0)$ is needed.)
b) Prove that $\lambda=0$ is not an eigenvalue.
c) Let $\lambda_{k} \neq \lambda_{l}$ be eigenvalues, prove that the eigenfunctions $R_{k}(r), R_{l}(r)$ satisfy

$$
\begin{equation*}
\int_{0}^{1} R_{k}(r) R_{l}(r) r \mathrm{~d} r=0 \tag{25}
\end{equation*}
$$

(Hint: For a) and c), write the equation as

$$
\begin{equation*}
\frac{1}{r}\left[\left(r R^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R\right]+\lambda R=0 \tag{26}
\end{equation*}
$$

first.)
Proof. We follow the hint and write the equation as

$$
\begin{equation*}
\frac{1}{r}\left[\left(r R^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R\right]+\lambda R=0 \tag{27}
\end{equation*}
$$

- $\lambda<0$ cannot be eigenvalue.

Let $\lambda$ be an eigenvalue with corresponding eigenfunction $R$. Multiply both sides of the equation by $r R$ and integrate from 0 to 1 we have

$$
\begin{align*}
0 & =\int_{0}^{1}\left\{\frac{1}{r}\left[\left(r R^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R\right]+\lambda R\right\} R r \mathrm{~d} r \\
& =\int_{0}^{1}\left[\left(r R^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R\right] R \mathrm{~d} r+\int_{0}^{1} \lambda R^{2} \mathrm{~d} r \\
& =\int_{0}^{1}\left(r R^{\prime}\right)^{\prime} R \mathrm{~d} r-\int_{0}^{1}\left(\frac{n^{2}}{r}-\lambda\right) R^{2} \mathrm{~d} r \\
& =\left.r R^{\prime} R\right|_{0} ^{1}-\int_{0}^{1} r\left(R^{\prime}\right)^{2}-\int_{0}^{1}\left(\frac{n^{2}}{r}-\lambda\right) R^{2} \mathrm{~d} r . \tag{28}
\end{align*}
$$

As $R(1)=0, R^{\prime}(0) R(0)$ bounded, the boundary terms vanish. Consequently

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{n^{2}}{r}-\lambda\right) R^{2} \mathrm{~d} r \leqslant 0 \tag{29}
\end{equation*}
$$

which is not possible for nonzero $R$ if $\lambda<0$.
Remark 1. Note that in fact the above also shows $\lambda=0$ is not an eigenvalue.

- $\lambda=0$ is not an eigenvalue.

When $\lambda=0$ the equation becomes

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0 \tag{30}
\end{equation*}
$$

which general solution is

$$
R(r)=\left\{\begin{array}{ll}
C_{1}+C_{2} \log r & n=0  \tag{31}\\
C_{1} r^{n}+C_{2} r^{-n} & n \neq 0
\end{array} .\right.
$$

The boundary condition at 0 leads to $C_{2}=0$. Then the other boundary condition $R(1)=0$ requires $C_{1}=0$.

- If

$$
\begin{equation*}
\frac{1}{r}\left[\left(r R_{k}^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R_{k}\right]+\lambda_{k} R_{k}=0, \quad \frac{1}{r}\left[\left(r R_{l}^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R_{l}\right]+\lambda_{l} R_{l}=0 \tag{32}
\end{equation*}
$$

then we can multiply the first equation by $r R_{l}$ and integrate from 0 to 1 :

$$
\begin{align*}
0 & =\int_{0}^{1}\left[\left(r R_{k}^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R_{k}\right] R_{l}+\lambda_{k} \int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r \\
& =\int_{0}^{1}\left(r R_{k}^{\prime}\right)^{\prime} R_{l}-\int_{0}^{1} \frac{n^{2}}{r} R_{k} R_{l}+\lambda_{k} \int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r \\
& \left.=\left[r R_{k}^{\prime} R_{l}\right]\right]_{0}^{1}-\int_{0}^{1} r R_{k}^{\prime} R_{l}^{\prime}-\int_{0}^{1} \frac{n^{2}}{r} R_{k} R_{l}+\lambda_{k} \int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r \\
& =0-\left.\left[r R_{k} R_{l}^{\prime}\right]\right|_{0} ^{1}+\int_{0}^{1} R_{k}\left(r R_{l}^{\prime}\right)^{\prime}-\int_{0}^{1} \frac{n^{2}}{r} R_{k} R_{l}+\lambda_{k} \int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r \\
& =\int_{0}^{1}\left[\left(r R_{l}^{\prime}\right)^{\prime}-\frac{n^{2}}{r} R_{l}\right] R_{k} \mathrm{~d} r+\lambda_{k} \int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r \\
& =\left(\lambda_{k}-\lambda_{l}\right) \int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r . \tag{33}
\end{align*}
$$

Since $\lambda_{k}-\lambda_{l} \neq 0$ we conclude

$$
\begin{equation*}
\int_{0}^{1} R_{k} R_{l} r \mathrm{~d} r=0 \tag{34}
\end{equation*}
$$

which is the desired orthogonality relation.

