Math 436 Fall 2012 Homework 3 Solutions

Due Oct. 25 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 2.28. d), e). Solve

$$
\begin{equation*}
u_{t}+u_{x}^{2}+u=0, \quad u(x, 0)=x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{t}+u_{x}^{2}=0, \quad u(x, 0)=-x^{2} . \tag{2}
\end{equation*}
$$

Show that the solution of the latter breaks down when $t=1 / 4$.

Solution.

- d). We have $F(x, t, z, p, q)=q+p^{2}+z$. The system of characteristics is

$$
\begin{align*}
\dot{x} & =F_{p}=2 p \tag{3}\\
\dot{t} & =F_{q}=1 \tag{4}\\
\dot{z} & =p F_{p}+q F_{q}=2 p^{2}+q=p^{2}-z \tag{5}\\
\dot{p} & =-F_{x}-p F_{z}=p \tag{6}\\
\dot{q} & =-F_{t}-q F_{z}=q \tag{7}
\end{align*}
$$

with intial conditions

$$
\begin{equation*}
x_{0}=\tau, \quad t_{0}=0, \quad z_{0}=\tau \tag{8}
\end{equation*}
$$

and p_{0}, q_{0} satisfy

$$
\begin{equation*}
q_{0}+p_{0}^{2}+z_{0}=0, \quad 1=\frac{\mathrm{d} z_{0}}{\mathrm{~d} \tau}=p_{0} \frac{\mathrm{~d} x_{0}}{\mathrm{~d} \tau}+q_{0} \frac{\mathrm{~d} t_{0}}{\mathrm{~d} \tau}=p_{0} . \tag{9}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
p_{0}=1, \quad q_{0}=-\tau-1 \tag{10}
\end{equation*}
$$

From this we solve

$$
\begin{equation*}
p(\tau, s)=e^{s}, \quad q(\tau, s)=-(\tau+1) e^{s} . \tag{11}
\end{equation*}
$$

Substituting into other equations we obtain

$$
\begin{equation*}
x(\tau, s)=\tau+2 e^{s}, \quad t(\tau, s)=s, \quad z(\tau, s)=\frac{e^{3 s}}{3}+\tau e^{-s} \tag{12}
\end{equation*}
$$

From the x, t equations we have $\tau=x-2 e^{t}$. Thus

$$
\begin{equation*}
u(x, t)=z(\tau, s)=\frac{e^{3 t}}{3}+\left(x-2 e^{t}\right) e^{-t}=\frac{e^{3 t}}{3}+x e^{-t}-2 \tag{13}
\end{equation*}
$$

- e). We have $F(x, t, z, p, q)=q+p^{2}$. The system of characteristics is

$$
\begin{align*}
\dot{x} & =F_{p}=2 p \tag{14}\\
\dot{t} & =F_{q}=1 \tag{15}\\
\dot{z} & =p F_{p}+q F_{q}=2 p^{2}+q=p^{2} \tag{16}\\
\dot{p} & =-F_{x}-p F_{z}=0 \tag{17}\\
\dot{q} & =-F_{t}-q F_{z}=0 \tag{18}
\end{align*}
$$

with intial conditions

$$
\begin{equation*}
x_{0}=\tau, \quad t_{0}=0, \quad z_{0}=-\tau^{2} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{0}+p_{0}^{2}=0, \quad-2 \tau=\frac{\mathrm{d} z_{0}}{\mathrm{~d} \tau}=p_{0} \frac{\mathrm{~d} x_{0}}{\mathrm{~d} \tau}+q_{0} \frac{\mathrm{~d} t_{0}}{\mathrm{~d} \tau}=p_{0} \tag{20}
\end{equation*}
$$

This gives

$$
\begin{equation*}
p(\tau, s)=p_{0}=-2 \tau, \quad q(\tau, s)=q_{0}=-4 \tau^{2} . \tag{21}
\end{equation*}
$$

Consequently we have
$x(\tau, s)=\tau-4 \tau s, \quad t(\tau, s)=s, \quad z(\tau, s)=4 \tau^{2} s-\tau^{2}=(4 s-1) \tau^{2}$.
The x, t equations now give

$$
\begin{equation*}
s=t, \quad \tau=\frac{x}{1-4 t} \tag{23}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
u(x, t)=z(\tau, s)=\frac{x^{2}}{4 t-1} \tag{24}
\end{equation*}
$$

It is clear that the solution breaks down at $t=1 / 4$.

- Ex. 2.29. (Snell's law) Consider the eiconal equation

$$
u_{x}^{2}+u_{y}^{2}=n(x, y)^{2}, \quad n(x, y)= \begin{cases}n_{1} & y<0 \tag{25}\\ n_{2} & y>0\end{cases}
$$

Here $n_{2}>n_{1}$ are constants. Let the initial condition be $u(x, 0)=n_{1} x \cos \theta$ with $\theta \in\left[0, \frac{\pi}{2}\right]$.
a) Solve the equation.
b) By considering the directions ∇u, confirm Snell's law. ${ }^{1}$

Solution.

a) We have $F(x, y, z, p, q)=p^{2}+q^{2}-n(x, y)^{2}$. Thus the system for characteristics is

$$
\begin{align*}
\dot{x} & =F_{p}=2 p, \tag{26}\\
\dot{y} & =F_{q}=2 q, \tag{27}\\
\dot{z} & =p F_{p}+q F_{q}=2\left(p^{2}+q^{2}\right)=2 n(x, y)^{2}=\left\{\begin{array}{ll}
2 n_{1}^{2} & y<0 \\
2 n_{2}^{2} & y>0
\end{array},\right. \tag{28}\\
\dot{p} & =-F_{x}-p F_{z}=0, \tag{29}\\
\dot{q} & =-F_{y}-q F_{z}=0 . \tag{30}
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
x_{0}=\tau, y_{0}=0, u_{0}=n_{1} \tau \cos \theta \tag{31}
\end{equation*}
$$

[^0]We determine p_{0}, q_{0} from

$$
p_{0}^{2}+q_{0}^{2}=\left\{\begin{array}{ll}
n_{1}^{2} & y=0- \tag{32}\\
n_{2}^{2} & y=0+
\end{array}, \quad n_{1} \cos \theta=\frac{\mathrm{d} u_{0}}{\mathrm{~d} \tau}=p_{0} \frac{\mathrm{~d} x_{0}}{\mathrm{~d} \tau}+q_{0} \frac{\mathrm{~d} y_{0}}{\mathrm{~d} \tau}=p_{0}\right.
$$

Therefore we have $p_{0}=n_{1} \cos \theta, q_{0}=\left\{\begin{array}{ll} \pm n_{1} \sin \theta & y=0- \\ \pm \sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}} & y=0+\end{array}\right.$. Now notice that $\dot{y}=2 q$. If we assume that when $s>0, y>0$, we must have $\dot{y}>0$ at $y=0$ therefore

This leads to

$$
q_{0}=\left\{\begin{array}{ll}
n_{1} \sin \theta & y=0- \tag{33}\\
\sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}} & y=0+
\end{array} .\right.
$$

$$
p(\tau, s)=n_{1} \cos \theta, \quad q(\tau, s)=\left\{\begin{array}{ll}
n_{1} \sin \theta & y<0 \tag{34}\\
\sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}} & y>0
\end{array} .\right.
$$

Next we solve the x, y, z equations:

$$
\begin{gather*}
\dot{x}=2 p \Longrightarrow x=\tau+2 n_{1} s \cos \theta, \tag{35}\\
\dot{y}=2 q \Longrightarrow y=\left\{\begin{array}{ll}
2 n_{1} s \sin \theta & s<0 \\
2 s \sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}} & s>0
\end{array},\right. \tag{36}\\
\dot{z}=\left\{\begin{array}{ll}
2 n_{1}^{2} & y<0 \\
2 n_{2}^{2} & y>0
\end{array} \Longrightarrow z(s, \tau)=\left\{\begin{array}{ll}
n_{1} \tau \cos \theta+2 n_{1}^{2} s & y<0 \\
n_{1} \tau \cos \theta+2 n_{2}^{2} s & y>0
\end{array} .\right.\right. \tag{37}
\end{gather*}
$$

Thus we have

$$
s=\left\{\begin{array}{ll}
\frac{y}{2 n_{1} \sin \theta} & y<0 \tag{38}\\
\frac{y}{2 \sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}}} & y>0
\end{array}, \tau= \begin{cases}x-y \frac{\cos \theta}{\sin \theta} & y<0 \\
x-\frac{y n_{1} \cos \theta}{\sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}}} & y>0\end{cases}\right.
$$

which leads to

$$
u(x, y)= \begin{cases}n_{1}[x \cos \theta+y \sin \theta] & y<0 \tag{39}\\ n_{1} x \cos \theta+y \sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}} & y>0\end{cases}
$$

b) We have

$$
u_{x}=n_{1} \cos \theta, \quad u_{y}= \begin{cases}n_{1} \sin \theta & y<0 \tag{40}\\ \sqrt{n_{2}^{2}-\left(n_{1} \cos \theta\right)^{2}} & y>0\end{cases}
$$

Here θ is the angle between the vector ∇u and the interface $y=0$ in $y<0$. If we let θ be the angle between ∇u and $y=0$ in $y>0$, we have

$$
\begin{equation*}
\cos \tilde{\theta}=\frac{u_{x}}{\left(u_{x}^{2}+u_{y}^{2}\right)^{1 / 2}}=\frac{n_{1}}{n_{2}} \cos \theta . \tag{41}
\end{equation*}
$$

This is exactly Snell's law.

- Ex. 2.32. a) Reduce the following equation

$$
\begin{equation*}
u_{x x}+4 u_{x y}+3 u_{y y}+3 u_{x}-u_{y}+u=0 \tag{42}
\end{equation*}
$$

to canonical form. Then use further transformation

$$
\begin{equation*}
u(\xi, \eta)=\exp (\alpha \xi+\beta \eta) v(\xi, \eta) \tag{43}
\end{equation*}
$$

and choose the constants α, β to eliminate the first derivative terms.
Solution. We have

$$
\begin{equation*}
(\mathrm{d} y)^{2}-4(\mathrm{~d} x)(\mathrm{d} y)+3(\mathrm{~d} x)^{2}=0 \Longrightarrow(\mathrm{~d} y-3 \mathrm{~d} x)(\mathrm{d} y-\mathrm{d} x)=0 \tag{44}
\end{equation*}
$$

so we set $\xi=y-3 x, \eta=y-x$. So $\xi_{x}=-3, \xi_{y}=1, \eta_{x}=-1, \eta_{y}=1$. This leads to

$$
\begin{equation*}
u_{x}=-3 u_{\xi}-u_{\eta}, \quad u_{y}=u_{\xi}+u_{\eta} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{x x}=9 u_{\xi \xi}+6 u_{\xi \eta}+u_{\eta}, u_{x y}=-3 u_{\xi \xi}-4 u_{\xi \eta}-u_{\eta \eta}, u_{y y}=u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta} \tag{46}
\end{equation*}
$$

Thus the equation in $\xi-\eta$ variables reads

$$
\begin{equation*}
4 u_{\xi \eta}+10 u_{\xi}+4 u_{\eta}-u=0 \tag{47}
\end{equation*}
$$

If we introduce $v(\xi, \eta)$ through

$$
\begin{equation*}
u(\xi, \eta)=\exp (\alpha \xi+\beta \eta) v(\xi, \eta) \tag{48}
\end{equation*}
$$

then we have

$$
\begin{equation*}
u_{\xi}=\alpha e^{\alpha \xi+\beta \eta} v+e^{\alpha \xi+\beta \eta} v_{\xi}, \quad u_{\eta}=\beta e^{\alpha \xi+\beta \eta} v+e^{\alpha \xi+\beta \eta} v_{\eta} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{\xi \eta}=e^{\alpha \xi+\beta \eta} v_{\xi \eta}+\alpha e^{\alpha \xi+\beta \eta} v_{\eta}+\beta e^{\alpha \xi+\beta \eta} v_{\xi}+\alpha \beta e^{\alpha \xi+\beta \eta} v \tag{50}
\end{equation*}
$$

Substituting into the equation we obtain

$$
\begin{equation*}
e^{\alpha \xi+\beta \eta}\left[4 v_{\xi \eta}+(4 \beta+10) v_{\xi}+(4 \alpha+4) v_{\eta}+(4 \alpha \beta+10 \alpha+4 \beta-1) v\right]=0 \tag{51}
\end{equation*}
$$

Choosing $\alpha=-5 / 2, \beta=-1$ we reach

$$
\begin{equation*}
v_{\xi \eta}-5 v=0 \tag{52}
\end{equation*}
$$

- Ex. 2.33. Consider the general linear 2nd order equation in \mathbb{R}^{n} :

$$
\begin{equation*}
\sum_{i, j}^{n} a_{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i} u_{x_{i}}+c u+d=0 \tag{53}
\end{equation*}
$$

with constant coefficients. Prove that there is a change of variables which reduce the equation to canonical form.

Proof. Define the matrix $A=\left(a_{i j}\right)$. From linear algebra we know that there is a nonsingular matrix R such that

$$
R A R^{T}=\left(\begin{array}{ccc}
I_{p} & & \tag{54}\\
& -I_{q} & \\
& & 0_{n-p-q}
\end{array}\right)
$$

where I_{p} means the $p \times p$ identity matrix, 0_{r} means the $r \times r$ zero matrix.
Since $a_{i j}$ are constants, R is a constant matrix. Denoting its (i, j) entry by $r_{i j}$, we introduce the change of variables:

$$
\begin{equation*}
\xi_{i}=r_{i 1} x_{1}+r_{i 2} x_{2}+\cdots+r_{i n} x_{n} \tag{55}
\end{equation*}
$$

Then straightforward calculation shows that under such change of variables, the equation becomes

$$
\begin{equation*}
\sum_{i, j=1}^{n} \tilde{a}_{i j} u_{\xi_{i} \xi_{j}}+\text { lower order terms }=0 \tag{56}
\end{equation*}
$$

with the matrix

$$
\tilde{A}=\left(\tilde{a}_{i j}\right)=\left(\begin{array}{ccc}
I_{p} & & \tag{57}\\
& -I_{q} & \\
& & 0_{n-p-q}
\end{array}\right)
$$

This means the equation reads

$$
\begin{equation*}
u_{\xi_{1} \xi_{1}}+\cdots+u_{\xi_{p} \xi_{p}}-u_{\xi_{p+1} \xi_{p+1}}-\cdots-u_{\xi_{p+q} \xi_{p+q}}+\text { lower order terms }=0 \tag{58}
\end{equation*}
$$

which is exactly the canonical form.

- Ex. 2.40. Let $\varphi(x, y)=$ constant be a family of characteristics for

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}=c(x, y) u+d(x, y) \tag{59}
\end{equation*}
$$

Let $\xi=\varphi(x, y)$ and $\eta=\psi(x, y)$ be perpendicular to it. Show that the equation reduces to

$$
\begin{equation*}
\left(a \psi_{x}+b \psi_{y}\right) u_{\eta}=c u+d \tag{60}
\end{equation*}
$$

Now assume u is continuous across $\xi=0$ while u_{ξ} has a jump there, then the jump [u_{ξ}] satisfies

$$
\begin{equation*}
\left(a \psi_{x}+b \psi_{y}\right)\left[u_{\xi}\right]_{\eta}=c\left[u_{\xi}\right] \tag{61}
\end{equation*}
$$

Thus the propagation of jumps are determined by a equation.
Proof. Since $\varphi(x, y)=c$ is characteristics, we have $a \varphi_{x}+b \varphi_{y}=0$. Apply chain rule we have

$$
\begin{equation*}
a u_{x}+b u_{y}=\left(a \varphi_{x}+b \varphi_{y}\right) u_{\xi}+\left(a \psi_{x}+b \psi_{y}\right) u_{\eta}=\left(a \psi_{x}+b \psi_{y}\right) u_{\eta} \tag{62}
\end{equation*}
$$

That is the equation reduces to

$$
\begin{equation*}
\left(a \psi_{x}+b \psi_{y}\right) u_{\eta}=c u+d . \tag{63}
\end{equation*}
$$

If we further assume u is continuous across $\xi=0$ while u_{ξ} has a jump there, then we can take ∂_{ξ} of both sides of the equation to obtain

$$
\begin{equation*}
\left(a \psi_{x}+b \psi_{y}\right) u_{\xi \eta}+\left(a \psi_{x}+b \psi_{y}\right)_{\xi} u_{\eta}=c u_{\xi}+c_{\xi} u+d_{\xi} . \tag{64}
\end{equation*}
$$

As a, b, c, d are functions of x, y (that is ξ, η) only, all the terms in the above equations are continuous across $\xi=0$ except $\left(a \psi_{x}+b \psi_{y}\right) u_{\xi \eta}$ and $c u_{\xi}$. Taking the difference between $\xi=0+$ and $0-$ gives the desired result.

- Ex. 2.42. Consider the first order quasi-linear equation:

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{65}
\end{equation*}
$$

Assume that u is smooth everywhere except that along $\Phi=0$ there is a "jump" in its 2 nd order derivatives. Derive the equation for Φ. Then consider the case when the "jump" is in its k th derivative and all $(k-1)$ th derivatives are continuous across the curve.

Proof. We consider directly the general case. We do a change of variables $\xi=\Phi(x, y)$ and $\eta=\Psi(x, y)$ with level sets of Ψ perpendicular to that of Φ. Then the equation becomes

$$
\begin{equation*}
\left(a \Phi_{x}+b \Phi_{y}\right) u_{\xi}+\left(a \Psi_{x}+b \Psi_{y}\right) u_{\eta}=c . \tag{66}
\end{equation*}
$$

Since all the $(k-1)$ th derivatives are continuous across the curve, we have all the k th derivatives are also continuous except for $\partial_{\xi}^{k} u$: For any $l \geqslant 1$, we can write

$$
\begin{equation*}
\partial_{\eta}^{l} \partial_{\xi}^{k-l} u=\partial_{\eta}\left(\partial_{\eta}^{l-1} \partial_{\xi}^{k-l} u\right) \tag{67}
\end{equation*}
$$

which is a η derivative of a $(k-1)$ th order derivative. Therefore taking ∂_{ξ}^{k-1} of (66) we reach

$$
\begin{equation*}
\left(a \Phi_{x}+b \Phi_{y}\right)\left(\partial_{\xi}^{k} u\right)+[\text { terms continuous across } \xi=0]=0 . \tag{68}
\end{equation*}
$$

Now taking the difference between $\xi=0+$ and $0-$ we conclude

$$
\begin{equation*}
\left(a \Phi_{x}+b \Phi_{y}\right)\left[\partial_{\xi}^{k} u\right]=0 \Longrightarrow a \Phi_{x}+b \Phi_{y} \tag{69}
\end{equation*}
$$

which is the equation for characteristic curves.

[^0]: 1. Check wiki if you forget what it is.
