Math 436 Fall 2012 Homework 2

Due Oct. 11 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 2.2. Find the solution of the following Cauchy problems.
a) $x u_{x}+y u_{y}=2 x y, \quad$ with $u=2$ on $y=x^{2}$.
b) $u u_{x}-u u_{y}=u^{2}+(x+y)^{2} \quad$ with $u=1$ on $y=0$.

Solution.

a) We have

$$
\begin{equation*}
\frac{\mathrm{d} x}{x}=\frac{\mathrm{d} y}{y}=\frac{\mathrm{d} u}{2 x y} . \tag{1}
\end{equation*}
$$

The first equality gives $x \mathrm{~d} y=y \mathrm{~d} x \Longrightarrow \mathrm{~d}(y / x)=0$ so $\Phi=y / x$. The second inequality gives $2 x \mathrm{~d} y=\mathrm{d} u$ which together with $x \mathrm{~d} y=y \mathrm{~d} x$ gives $\mathrm{d} u=\mathrm{d}(x y)$. Therefore $\Psi=u-x y$. Finally the general solution is given by

$$
\begin{equation*}
F(y / x, u-x y)=0 \Longrightarrow u=x y+f(y / x) \tag{2}
\end{equation*}
$$

Applying the initial condition, we have

$$
\begin{equation*}
2=x x^{2}+f(x) \Longrightarrow f(x)=2-x^{3} \tag{3}
\end{equation*}
$$

Therefore the solution is

$$
\begin{equation*}
u=x y+2-\frac{y^{3}}{x^{3}} . \tag{4}
\end{equation*}
$$

b) We have

$$
\begin{equation*}
\frac{\mathrm{d} x}{u}=\frac{\mathrm{d} y}{-u}=\frac{\mathrm{d} u}{u^{2}+(x+y)^{2}} . \tag{5}
\end{equation*}
$$

The first $=$ gives $\mathrm{d}(x+y)=0$. Taking advantiage of this we have

$$
\begin{equation*}
\frac{\mathrm{d} x}{u}=\frac{\mathrm{d} u}{u^{2}+(x+y)^{2}} \Rightarrow 2 \mathrm{~d} x=\frac{\mathrm{d}\left(u^{2}\right)}{u^{2}+(x+y)^{2}} \Rightarrow \mathrm{~d}\left(2 x-\ln \left[u^{2}+(x+y)^{2}\right]\right)=0 \tag{6}
\end{equation*}
$$

Therefore the general solution is

$$
\begin{equation*}
F\left(x+y, 2 x-\ln \left[u^{2}+(x+y)^{2}\right]\right)=0 . \tag{7}
\end{equation*}
$$

This simplifies to

$$
\begin{equation*}
\ln \left[u^{2}+(x+y)^{2}\right]=2 x-f(x+y) . \tag{8}
\end{equation*}
$$

Applying the initial condition we have

$$
\begin{equation*}
\ln \left[1+x^{2}\right]=2 x-f(x) \Longrightarrow f(x)=2 x-\ln \left[1+x^{2}\right] \tag{9}
\end{equation*}
$$

So finally the solution is

$$
\begin{equation*}
\ln \left[u^{2}+(x+y)^{2}\right]=\ln \left[1+(x+y)^{2}\right]-2 y \tag{10}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
u^{2}+(x+y)^{2}=e^{-2 y}\left[1+(x+y)^{2}\right] . \tag{11}
\end{equation*}
$$

- Ex. 2.4. Consider a quasi-linear equation

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{12}
\end{equation*}
$$

(without specifying any initial conditions). Let $u_{1}(x, y), u_{2}(x, y)$ be two solutions. Assume that the surfaces $u-u_{1}(x, y)=0$ and $u-u_{2}(x, y)=0$ intersects along a curve Γ in the $x y u$ space. Show that Γ must be a characteristic curve.

Proof. Let Γ be parametrized by s, that is $\Gamma=\left(\begin{array}{l}x_{0}(s) \\ y_{0}(s) \\ u_{0}(s)\end{array}\right)$. Since u_{1}, u_{2} are different solutions, we have $\left(\begin{array}{c}u_{1 x} \\ u_{1 y} \\ -1\end{array}\right) \neq\left(\begin{array}{c}u_{2 x} \\ u_{2 y} \\ -1\end{array}\right)$ except may be at isolated points along Γ. This implies

$$
\left(\begin{array}{c}
\dot{x}_{0} \tag{13}\\
\dot{y}_{0} \\
\dot{u_{0}}
\end{array}\right) / /\left[\left(\begin{array}{c}
u_{1 x} \\
u_{1 y} \\
-1
\end{array}\right) \times\left(\begin{array}{c}
u_{2 x} \\
u_{2 y} \\
-1
\end{array}\right)\right] / /\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right) .
$$

Therefore Γ must be a characteristic curve.

- Ex. 2.7. Show that the initial value problem

$$
\begin{equation*}
u_{t}+u_{x}=0, \quad u=x \text { on } x^{2}+t^{2}=1 \tag{14}
\end{equation*}
$$

has no solution. However, if the initial data are given only over the semicircle that lies in the half-plane $x+t \leqslant 0$, the solution exists but is not differentiable along the characteristic base curves that issue from the two end points of the semicircle.

Proof. The characteristic curves are $x-t=c$ with $u=$ constant along each curve. Therefore the problem does not have classical solution. On the other hand, if the initial condition is $u=x$ on $x^{2}+t^{2}=1, x+t \leqslant 0$, then we can use $\tau=x-t$ to parametrize the initial curve and obtain

$$
\begin{equation*}
u_{0}(\tau)=\frac{\sqrt{2-\tau^{2}}+\tau}{2} \tag{15}
\end{equation*}
$$

If we take $s=x+t$, the solution is $u(\tau, s)=\frac{\sqrt{2-\tau^{2}}+\tau}{2}$ which gives $u(x, t)=$ $\frac{1}{2}\left[(2-(x-t))^{2}+(x-t)\right]$. Observe that

$$
\begin{equation*}
\frac{\partial u}{\partial \tau}=\frac{1}{2} \frac{1}{\sqrt{2-\tau^{2}}+\tau}\left[\frac{-\tau}{\sqrt{2-\tau^{2}}}+1\right] \tag{16}
\end{equation*}
$$

which becomes ∞ at $\tau= \pm \sqrt{2}$. It is clear that u_{x}, u_{t} becomes ∞ at the end points of the semicircle.

Intuitively the reason is clear: Approaching the end points, the ratio between the distance between two chacteristics and the distance along the semicircle of the two intersection points become larger and larger, approaching infinity.

- Ex. 2.12. Consider the wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}=0, \quad u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x) \tag{17}
\end{equation*}
$$

Show that
a) If we set $v(x, t)=u_{t}-u_{x}$, then v satisfies

$$
\begin{equation*}
v_{t}+v_{x}=0, \quad v(x, 0)=h(x)-g^{\prime}(x) \tag{18}
\end{equation*}
$$

b) Use method of characteristics to solve the v equation and then the u equation. Show that the solution is given by the d'Alembert's formula

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[g(x+t)+g(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} h(s) \mathrm{d} s . \tag{19}
\end{equation*}
$$

Solution. a) is obvious. For b), we first solve the v equation:

$$
\begin{equation*}
v_{t}+v_{x}=0, \quad v(x, 0)=h(x)-g^{\prime}(x) \tag{20}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
v(x, t)=h(x-t)-g^{\prime}(x-t) \tag{21}
\end{equation*}
$$

Now we solve

$$
\begin{equation*}
u_{t}-u_{x}=v=h(x-t)-g^{\prime}(x-t), \quad u(x, 0)=g(x) . \tag{22}
\end{equation*}
$$

The characteristics are $x+t=c$. So we introduce new variables $\tau=x+t, s=x-t$. The equation becomes

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} s}=\frac{1}{2}\left[g^{\prime}(s)-h(s)\right], \quad u_{0}(\tau)=g(\tau) \text { along } x_{0}(\tau)=\tau, t_{0}(\tau)=0 \tag{23}
\end{equation*}
$$

which in the new variables becomes

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} s}=\frac{1}{2}\left[g^{\prime}(s)-h(s)\right], \quad u_{0}(\tau, \tau)=g(\tau) . \tag{24}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
u(s, \tau)=g(\tau)-\frac{1}{2}\left[\int_{\tau}^{s} h(\xi) \mathrm{d} \xi+g(s)-g(\tau)\right]=\frac{g(\tau)+g(s)}{2}-\frac{1}{2} \int_{\tau}^{s} h(\xi) \mathrm{d} \xi \tag{25}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[g(x+t)+g(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} h(s) \mathrm{d} s . \tag{26}
\end{equation*}
$$

- Ex. 2.18. Solve (that is construct entropy solution for all t)

$$
u_{t}+\left(\frac{u^{4}}{4}\right)_{x}=0, \quad u(0, x)=\left\{\begin{array}{ll}
1 & x<0 \tag{27}\\
0 & x>0
\end{array} .\right.
$$

Solution. The speed of the shock is

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1 / 4-0}{1-0}=\frac{1}{4} \tag{28}
\end{equation*}
$$

therefore the solution is

$$
u(x, t)=\left\{\begin{array}{ll}
1 & x<t / 4 \tag{29}\\
0 & x>t / 4
\end{array} .\right.
$$

- Ex. 2.19. Compute explicitly the unique entropy solution of

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \quad u(0, x)=g \tag{30}
\end{equation*}
$$

for

$$
g(x)=\left\{\begin{array}{ll}
1 & x<-1 \tag{31}\\
0 & -1<x<0 \\
2 & 0<x<1 \\
0 & x>1
\end{array} .\right.
$$

Draw a picture of your answer. Be sure to illustrate what happens for all times $t>0$.
Solution. It is clear that initially we have two shocks and one rarefaction wave. The two shocks are

1. Starting from $(-1,0)$ with slope 2 ,
2. Starting from $(1,0)$ with slope $1 / 2$.

Note that after passing $(0,2)$ and $(2,1)$ both shocks are not straight anymore. Denote them by $x_{1}(t)$ and $x_{2}(t)$. First consider $x_{1}(t)$.

When $t<2$ we have $x_{1}(t)=\frac{1}{2} t-1$. For $t \geqslant 2$ we have

$$
\begin{equation*}
\dot{x}_{1}(t)=\frac{1}{2}\left(\frac{x_{1}}{t}+1\right), \quad x_{1}(2)=0 . \tag{32}
\end{equation*}
$$

Now let $y(t)=x_{1}(t)-t$. We have

$$
\begin{equation*}
\dot{y}(t)=\dot{x}_{1}(t)-1=\frac{x_{1}}{2 t}-\frac{1}{2}=\frac{y}{2 t} \Longrightarrow y=C t^{1 / 2} . \tag{33}
\end{equation*}
$$

Now as $y(2)=x_{1}(2)-2=-2$, we have $C=-\sqrt{2}$. Thus

$$
x_{1}(t)= \begin{cases}\frac{1}{2} t-1 & t \leqslant 2 \tag{34}\\ t-\sqrt{2} t^{1 / 2} & t>2\end{cases}
$$

For $x_{2}(t)$ we have

$$
\begin{equation*}
\dot{x}_{2}(t)=\frac{1}{2}\left(\frac{x_{2}}{t}+0\right), \quad x_{2}(1)=2 . \tag{35}
\end{equation*}
$$

Solving the equation we have

$$
\begin{equation*}
\ln x=\frac{1}{2} \ln t+C \Longrightarrow x=C t^{1 / 2} \tag{36}
\end{equation*}
$$

Using $x_{2}(1)=2$ we have

$$
\begin{equation*}
C=2 \tag{37}
\end{equation*}
$$

Thus the right shock is

$$
x_{2}(t)=\left\{\begin{array}{ll}
2 t & t \leqslant 1 \tag{38}\\
2 t^{1 / 2} & t>1
\end{array} .\right.
$$

Setting $x_{1}(t)=x_{2}(t)$ we see that the two shocks meet at the point $(2+\sqrt{2}, 6+4 \sqrt{2})$.
Finally, after $t=6+4 \sqrt{2}$, there is only one shock with speed $1 / 2$. To the left $u=1$ and to the right $u=0$.

- Ex. 2.22. Prove that

$$
u(t, x)= \begin{cases}0 & x<0 \tag{39}\\ x / t & 0<x<t \\ 1 & x>t\end{cases}
$$

is a weak solution to the problem

$$
u_{t}+u u_{x}=0, \quad u(0, x)=\left\{\begin{array}{cc}
0 & x<0 \tag{40}\\
1 & x>0
\end{array}\right.
$$

Proof. It suffices to prove the following: Consider finitely many regions Ω_{i} such that $\Omega_{i} \cap \Omega_{j}=\varnothing$ and $\cup \Omega_{i}=\mathbb{R} \times\{t>0\}$. Let $u(x, t)$ be such that $u_{t}+f(u)_{x}=0$ in each Ω_{i}, continuous across every $\Gamma_{i j}:=\bar{\Omega}_{i} \cap \bar{\Omega}_{j}$, and furthermore $u(x, t) \longrightarrow u_{0}(x)$ at every x when $t \longrightarrow 0$, then u is a weak solution.

Take any $\phi \in C_{0}^{1}\left(\mathbb{R}^{2}\right)$. We have, using integration by parts,

$$
\begin{align*}
\iint u \phi_{t}+f(u) \phi_{x} \mathrm{~d} x \mathrm{~d} t+\int u_{0}(x) \phi(x, 0) \mathrm{d} x= & \sum_{i} \iint_{\Omega_{i}} u \phi_{t}+f(u) \phi_{x} \mathrm{~d} x \mathrm{~d} t \\
& +\int u_{0}(x) \phi(x, 0) \mathrm{d} x \\
= & -\sum_{i} \iint_{\Omega_{i}}\left(u_{t}+f(u)_{x}\right) \phi \mathrm{d} x \mathrm{~d} t \\
& +\sum_{i, j} \int_{\Gamma_{i j}} n_{t}[u]+n_{x}[f(u)] \mathrm{d} s \\
& -\sum_{i} \int_{\partial \Omega_{i} \cap\{t=0\}} u \phi \mathrm{~d} x \\
& +\int u_{0}(x) \phi(x, 0) \mathrm{d} x \\
= & 0 \tag{41}
\end{align*}
$$

thanks to the fact that u is continuous across $\Gamma_{i j}$, which means $[u]=0$.

