
Math 436 Fall 2012 Homework 2

Due Oct. 11 in Class

Note. All problem numbers refer to “Updated” version of lecture note.

• Ex. 2.2. Find the solution of the following Cauchy problems.

a) xux + y uy = 2x y, with u =2 on y = x2.

b) uux −uuy = u2 + (x + y)2 with u =1 on y = 0.

Solution.

a) We have
dx

x
=

dy

y
=

du

2x y
. (1)

The first equality gives x dy = y dx� d(y/x) = 0 so Φ = y/x. The second
inequality gives 2 x dy =du which together with x dy = y dx gives du=d(x y).
Therefore Ψ= u−x y. Finally the general solution is given by

F (y/x, u−x y) = 0� u =x y + f(y/x). (2)

Applying the initial condition, we have

2 =xx2 + f(x)� f(x)= 2−x3. (3)

Therefore the solution is

u =x y +2− y3

x3
. (4)

b) We have
dx

u
=

dy

−u
=

du

u2 + (x + y)2
. (5)

The first = gives d(x + y) = 0. Taking advantiage of this we have

dx

u
=

du

u2 + (x + y)2
⇒2 dx=

d(u2)

u2 +(x + y)2
⇒d(2 x− ln [u2+(x+ y)2])=0 (6)

Therefore the general solution is

F (x + y, 2x− ln [u2 + (x + y)2]) = 0. (7)

This simplifies to

ln [u2 + (x + y)2] = 2x− f(x + y). (8)

Applying the initial condition we have

ln [1 +x2] = 2x− f(x)� f(x)= 2x− ln [1 +x2]. (9)

So finally the solution is

ln [u2 + (x + y)2] = ln [1+ (x + y)2]− 2 y (10)
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which simplifies to

u2 +(x + y)2 = e−2y [1+ (x + y)2]. (11)

• Ex. 2.4. Consider a quasi-linear equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (12)

(without specifying any initial conditions). Let u1(x, y), u2(x, y) be two solutions.
Assume that the surfaces u−u1(x, y)=0 and u−u2(x, y)=0 intersects along a curve
Γ in the xyu space. Show that Γ must be a characteristic curve.

Proof. Let Γ be parametrized by s, that is Γ =





x0(s)
y0(s)
u0(s)



. Since u1, u2 are different

solutions, we have





u1x

u1y

−1



 � 



u2x

u2y

−1



 except may be at isolated points along Γ. This

implies




ẋ0

ẏ0

u̇0



//









u1x

u1y

−1



×





u2x

u2y

−1







//





a

b

c



. (13)

Therefore Γ must be a characteristic curve. �

• Ex. 2.7. Show that the initial value problem

ut + ux =0, u = x on x2 + t2 =1 (14)

has no solution. However, if the initial data are given only over the semicircle that
lies in the half-plane x + t 6 0, the solution exists but is not differentiable along the
characteristic base curves that issue from the two end points of the semicircle.

Proof. The characteristic curves are x − t = c with u = constant along each curve.
Therefore the problem does not have classical solution. On the other hand, if the
initial condition is u = x on x2 + t2 = 1, x + t 6 0, then we can use τ = x − t to
parametrize the initial curve and obtain

u0(τ) =
2− τ 2

√
+ τ

2
. (15)

If we take s = x + t, the solution is u(τ , s) =
2− τ2

√

+ τ

2
which gives u(x, t) =

1

2
[(2− (x− t))2 + (x− t)]. Observe that

∂u

∂τ
=

1

2

1

2− τ 2
√

+ τ

[

−τ

2− τ 2
√ + 1

]

(16)

which becomes ∞ at τ =± 2
√

. It is clear that ux, ut becomes ∞ at the end points of
the semicircle.

Intuitively the reason is clear: Approaching the end points, the ratio between the
distance between two chacteristics and the distance along the semicircle of the two
intersection points become larger and larger, approaching infinity. �
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• Ex. 2.12. Consider the wave equation

utt − uxx = 0, u(x, 0)= g(x), ut(x, 0) =h(x). (17)

Show that

a) If we set v(x, t)= ut −ux, then v satisfies

vt + vx =0, v(x, 0) =h(x)− g ′(x). (18)

b) Use method of characteristics to solve the v equation and then the u equation.
Show that the solution is given by the d’Alembert’s formula

u(x, t) =
1

2
[g(x + t)+ g(x− t)]+

1

2

∫

x−t

x+t

h(s) ds. (19)

Solution. a) is obvious. For b), we first solve the v equation:

vt + vx = 0, v(x, 0)= h(x)− g ′(x) (20)

to obtain

v(x, t)= h(x− t)− g ′(x− t). (21)

Now we solve

ut −ux = v = h(x− t)− g ′(x− t), u(x, 0)= g(x). (22)

The characteristics are x + t = c. So we introduce new variables τ = x + t, s = x − t.
The equation becomes

du

ds
=

1

2
[g ′(s)−h(s)], u0(τ )= g(τ ) along x0(τ )= τ , t0(τ) = 0. (23)

which in the new variables becomes

du

ds
=

1

2
[g ′(s)− h(s)], u0(τ , τ )= g(τ ). (24)

The solution is

u(s, τ) = g(τ)− 1

2

[
∫

τ

s

h(ξ) dξ + g(s)− g(τ )

]

=
g(τ )+ g(s)

2
− 1

2

∫

τ

s

h(ξ) dξ . (25)

This leads to

u(x, t) =
1

2
[g(x + t)+ g(x− t)]+

1

2

∫

x−t

x+t

h(s) ds. (26)

• Ex. 2.18. Solve (that is construct entropy solution for all t)

ut +

(

u4

4

)

x

= 0, u(0, x)=

{

1 x < 0
0 x > 0

. (27)

Solution. The speed of the shock is

dx

dt
=

1/4− 0

1− 0
=

1

4
(28)
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therefore the solution is

u(x, t)=

{

1 x< t/4
0 x> t/4

. (29)

• Ex. 2.19. Compute explicitly the unique entropy solution of

ut +

(

u2

2

)

x

=0, u(0, x) = g (30)

for

g(x)=















1 x<−1
0 −1 <x < 0
2 0<x < 1
0 x> 1

. (31)

Draw a picture of your answer. Be sure to illustrate what happens for all times t>0.
Solution. It is clear that initially we have two shocks and one rarefaction wave. The
two shocks are

1. Starting from (−1, 0) with slope 2,

2. Starting from (1, 0) with slope 1/2.

Note that after passing (0,2) and (2,1) both shocks are not straight anymore. Denote
them by x1(t) and x2(t). First consider x1(t).

When t < 2 we have x1(t)=
1

2
t− 1. For t > 2 we have

ẋ1(t)=
1

2

(

x1

t
+1

)

, x1(2) = 0. (32)

Now let y(t) =x1(t)− t. We have

ẏ(t) = ẋ1(t)− 1 =
x1

2 t
− 1

2
=

y

2 t
� y = C t1/2. (33)

Now as y(2)= x1(2)− 2 =−2, we have C =− 2
√

. Thus

x1(t)=







1

2
t− 1 t 6 2

t− 2
√

t1/2 t > 2
. (34)

For x2(t) we have

ẋ2(t)=
1

2

(

x2

t
+0

)

, x2(1) = 2. (35)

Solving the equation we have

lnx =
1

2
ln t +C � x =C t1/2. (36)

Using x2(1)= 2 we have

C =2. (37)

Thus the right shock is

x2(t)=

{

2 t t 6 1

2 t1/2 t > 1
. (38)
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Setting x1(t)=x2(t) we see that the two shocks meet at the point
(

2+ 2
√

,6+4 2
√ )

.
Finally, after t = 6 + 4 2

√
, there is only one shock with speed 1/2. To the left

u =1 and to the right u =0.

• Ex. 2.22. Prove that

u(t, x) =







0 x < 0
x/t 0< x< t

1 x > t

(39)

is a weak solution to the problem

ut +uux = 0, u(0, x)=

{

0 x< 0
1 x> 0

. (40)

Proof. It suffices to prove the following: Consider finitely many regions Ωi such that
Ωi∩Ωj =∅ and ∪Ωi =R×{t> 0}. Let u(x, t) be such that ut + f(u)x =0 in each Ωi,

continuous across every Γij6 Ω̄i ∩ Ω̄j, and furthermore u(x, t)� u0(x) at every x

when t� 0, then u is a weak solution.
Take any φ∈C0

1(R2). We have, using integration by parts,
∫ ∫

uφt + f(u) φx dx dt +

∫

u0(x) φ(x, 0) dx =
∑

i

∫ ∫

Ωi

uφt + f(u) φx dx dt

+

∫

u0(x) φ(x, 0) dx

= −
∑

i

∫ ∫

Ωi

(ut + f(u)x) φdx dt

+
∑

i,j

∫

Γij

nt [u] + nx [f(u)] ds

−
∑

i

∫

∂Ωi∩{t=0}

uφdx

+

∫

u0(x) φ(x, 0) dx

= 0 (41)

thanks to the fact that u is continuous across Γij, which means [u] = 0. �
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