MATH 436 FALL 2012 HOMEWORK 2

DUE OctT. 11 IN CLASS

Note. All problem numbers refer to “Updated” version of lecture note.

e Ex. 2.2. Find the solution of the following Cauchy problems.

a) Tuz+yuy,=2zY, with © =2 on y =22

b) vu, —uuy=v’*+ (x+y)*>  withu=1on y=0.
Solution.

a) We have
de _dy_ du

x y  2zy’

(1)

The first equality gives z dy = y de = d(y/x) =0 so ® = y/x. The second
inequality gives 2 x dy = du which together with x dy =1y dx gives du=d(z y).

Therefore ¥ =u — zy. Finally the general solution is given by

Fly/z,u—zy)=0=u=zy+ f(y/z).
Applying the initial condition, we have
2=z2’+ f(x)= f(x)=2—2a"

Therefore the solution is
3

Y
u::)sy+2—§.
b) We have
de  dy du

u  —u w2+ (r+y)?

The first = gives d(x + y) =0. Taking advantiage of this we have

e du L gg. d@)
u w4 (r+y)? u?+ (z+y)?

Therefore the general solution is
Flx+y,2z —In[u*+ (x+y)?]) =0.
This simplifies to
In[u*+ (z+y)}=2z— flx+y).

Applying the initial condition we have

In[l+2%=22— f(x)= f(x)=2z—In[1+27.

So finally the solution is

In[u? + (z + y)2 =In [L+ (2 + y)?) — 2y

=d2z—In[u*+ (z+1y)?])=0

(2)

(10)
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which simplifies to
W+ (z+y)P=e2[1+ (z+y)?. (11)
Ex. 2.4. Consider a quasi-linear equation
a(z,y,u) uy +b(x,y,u) uy=c(z,y,u) (12)

(without specifying any initial conditions). Let ui(x, y), us(z, y) be two solutions.
Assume that the surfaces u —u;(z, y) =0 and u — us(x, y) =0 intersects along a curve
I' in the zyu space. Show that I must be a characteristic curve.

. . o(s) . .
Proof. Let I' be parametrized by s, that is ' = ( y3(3> ) Since uq, uy are different
s . uo(s)
solutions, we have (uiy ) + (uzy> except may be at isolated points along I'. This
-1 -1

implies
5(}0 U1z U2y a
v |// Uty | X| U2y AR (13)
u() —1 —1 C

Therefore I' must be a characteristic curve. O

Ex. 2.7. Show that the initial value problem
U+ uy =0, u=xon r2+t>=1 (14)

has no solution. However, if the initial data are given only over the semicircle that
lies in the half-plane x + ¢t <0, the solution exists but is not differentiable along the
characteristic base curves that issue from the two end points of the semicircle.

Proof. The characteristic curves are x — t = ¢ with u = constant along each curve.
Therefore the problem does not have classical solution. On the other hand, if the
initial condition is u = x on 2? +t> =1, 2 + ¢t < 0, then we can use 7 = x — t to
parametrize the initial curve and obtain

2712471

uo(T) = 5 (15)
Ilf we take s = x + t, the solution is u(r, s) = —2_272“ which gives u(z, t) =
5[(2=(x —1))*+ (x —t)]. Observe that
ou 1 1 —T
- +1 16
or 2\/2—72—1-7'[\/2—7'2 } (16)

which becomes oo at 7==4+/2. It is clear that u,,u; becomes oo at the end points of
the semicircle.

Intuitively the reason is clear: Approaching the end points, the ratio between the
distance between two chacteristics and the distance along the semicircle of the two
intersection points become larger and larger, approaching infinity. 0
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Ex. 2.12. Consider the wave equation
utt_ummzov U(ZL’,O)ZQ(LU), ut(xvo):h’(x) (17>
Show that

a) If we set v(x,t) =wu; — u,, then v satisfies
v+ v, =0, v(z,0)=h(x)— g'(x). (18)

b) Use method of characteristics to solve the v equation and then the u equation.
Show that the solution is given by the d’Alembert’s formula

T+t

u(:c,t):%[g(at+t)+g(a:—t)]+%/ h(s) ds. (19)

—t

Solution. a) is obvious. For b), we first solve the v equation:

v+ v, =0, v(z,0)=h(x)— ¢'(x) (20)
to obtain
v(xz,t)=h(z—1t)— g'(x —1t). (21)
Now we solve
up—uz=v="h(r—1t)—g'(x —t), u(z,0)=g(x). (22)

The characteristics are x +t=c. So we introduce new variables T=x +t,s=xz —t.
The equation becomes

W_21s)—h(s)), wolr)=g(r) along wo(r) =7, tofr) =0. (23)
which in the new variables becomes
dev 1,
&g W) =hs), (T, T)=9(7). (24)

The solution is

s =alr) 5| [ @ ae+ ot6) - )| = LDFID 2 [ nigae. (o)

This leads to

u(e, 1) =+ [gla+1) + gl 1) +%/I+ h(s) ds. (26)

Ex. 2.18. Solve (that is construct entropy solution for all t)

u? 1 <0
ut+<z>x—0, u(O,:E)—{ 0 20" (27)
Solution. The speed of the shock is

dz  1/4—-0 1
dt~ 1-0 4 (28)
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therefore the solution is

1 z<t/4
u(:c,t)—{o pe 1/ (29)
Ex. 2.19. Compute explicitly the unique entropy solution of
u2
U+ (7) =0, u(0,z)=g (30)
for ‘
1 z<-1
0 -1<z<0
90=9 2 g<r<1 (31
0 z>1

Draw a picture of your answer. Be sure to illustrate what happens for all times ¢ > 0.
Solution. It is clear that initially we have two shocks and one rarefaction wave. The
two shocks are

1,0) with slope 2,
0) with slope 1/2.

Note that after passing (0,2) and (2, 1) both shocks are not straight anymore. Denote
them by x1(t) and xo(t). First consider z4(¢).
When ¢ < 2 we have z4(¢) :%t — 1. For t >2 we have

1. Starting from (—
2. Starting from (1

fﬂo:%(%L+Q, 21(2) =0. (32)
Now let y(t) =x1(t) —t. We have
() =dy(t)—1=21_L_ Y _ o112
y(t) =21(t) 1_2t 5 57 = y=Ct/~. (33)
Now as y(2) =x1(2) —2=—2, we have C'= —+/2. Thus
L1 i<
ri(t)=¢ 2 = (34)
t—V21/% t>2
For x4(t) we have
fﬂo:%(%iuﬁ, 2a(1) =2. (35)
Solving the equation we have
mx:%m¢+0:=>xzcﬂﬂ (36)
Using x5(1) =2 we have
C=2. (37)

Thus the right shock is

21 t<1
fz(t):{ 241/2 p5 1 (38)
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Setting x1(t) =x2(t) we see that the two shocks meet at the point (2+v/2,6+4 v/2).
Finally, after ¢t = 6 + 4 v/2, there is only one shock with speed 1 /2. To the left
u =1 and to the right ©=0.

Ex. 2.22. Prove that

0 x<0
u(t,x)=q x/t 0<z<t (39)
1 x>t
is a weak solution to the problem
0 z<0
Uy +uu, =0, u(O,x)—{ 1 250" (40)

Proof. It suffices to prove the following: Consider finitely many regions €2; such that
Q,NQ;=2 and UQ; =R x {t >0}. Let u(z,t) be such that u;+ f(u), =0 in each 2,
continuous across every I';;:= ;N Q;, and furthermore u(z, t) — ug(x) at every x
when t — 0, then u is a weak solution.

Take any ¢ € C3(IR?). We have, using integration by parts,

//u¢t+f(u)¢xdxdt+/uo(x)gb(:)s,())d:)s = Z//Qiugbﬁ—f(u)%dxdt
+ [uofa) o, 0)
- —Z // (w4 f(u),) ¢dadt
+ZJ /F e [u] + g [ fw)] ds
—g /8 m{tzo}uqsdx

+/u0(:c) o(z,0)dz
=0 (41)

thanks to the fact that w is continuous across I';;, which means [u] = 0. O



