Math 436 Fall 2012 Homework 2

Due Oct. 11 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 2.2. Find the solution of the following Cauchy problems.
a) $x u_{x}+y u_{y}=2 x y, \quad$ with $u=2$ on $y=x^{2}$.
b) $u u_{x}-u u_{y}=u^{2}+(x+y)^{2} \quad$ with $u=1$ on $y=0$.
- Ex. 2.4. Consider a quasi-linear equation

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{1}
\end{equation*}
$$

(without specifying any initial conditions). Let $u_{1}(x, y), u_{2}(x, y)$ be two solutions. Assume that the surfaces $u-u_{1}(x, y)=0$ and $u-u_{2}(x, y)=0$ intersects along a curve Γ in the $x y u$ space. Show that Γ must be a characteristic curve.

- Ex. 2.7. Show that the initial value problem

$$
\begin{equation*}
u_{t}+u_{x}=0, \quad u=x \text { on } x^{2}+t^{2}=1 \tag{2}
\end{equation*}
$$

has no solution. However, if the initial data are given only over the semicircle that lies in the half-plane $x+t \leqslant 0$, the solution exists but is not differentiable along the characteristic base curves that issue from the two end points of the semicircle.

- Ex. 2.12. Consider the wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}=0, \quad u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x) \tag{3}
\end{equation*}
$$

Show that
a) If we set $v(x, t)=u_{t}-u_{x}$, then v satisfies

$$
\begin{equation*}
v_{t}+v_{x}=0, \quad v(x, 0)=h(x)-g^{\prime}(x) . \tag{4}
\end{equation*}
$$

b) Use method of characteristics to solve the v equation and then the u equation. Show that the solution is given by the d'Alembert's formula

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[g(x+t)+g(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} h(s) \mathrm{d} s \tag{5}
\end{equation*}
$$

- Ex. 2.18. Solve (that is construct entropy solution for all t)

$$
u_{t}+\left(\frac{u^{4}}{4}\right)_{x}=0, \quad u(0, x)= \begin{cases}1 & x<0 \tag{6}\\ 0 & x>0\end{cases}
$$

- Ex. 2.19. Compute explicitly the unique entropy solution of

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \quad u(0, x)=g \tag{7}
\end{equation*}
$$

for

$$
g(x)=\left\{\begin{array}{ll}
1 & x<-1 \tag{8}\\
0 & -1<x<0 \\
2 & 0<x<1 \\
0 & x>1
\end{array} .\right.
$$

Draw a picture of your answer. Be sure to illustrate what happens for all times $t>0$.

- Ex. 2.22. Prove that

$$
u(t, x)= \begin{cases}0 & x<0 \tag{9}\\ x / t & 0<x<t \\ 1 & x>t\end{cases}
$$

is a weak solution to the problem

$$
u_{t}+u u_{x}=0, \quad u(0, x)=\left\{\begin{array}{ll}
0 & x<0 \tag{10}\\
1 & x>0
\end{array} .\right.
$$

