Math 436 Fall 2012 Homework 1 Solutions

Due Sept. 27 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 1.1. Derive in detail the equation for random walk in the following general case: The probability of the particle at (x, t) moving left, right, staying, and disappearing are $p_{L}(x, t), p_{R}(x, t), p_{S}(x, t)$ and $p_{D}(x, t)$. Assume the sum of these probabilities is 1 . Note that as $h, \tau \rightarrow 0$, these probabilities need to satisfy certain relations (similar to $p_{R}-p_{L} \sim h$).
Solution. We have ${ }^{1}$

$$
\begin{equation*}
u(x, t+\tau)=p_{L}(x+h, t) u(x+h, t)+p_{R}(x-h, t) u(x-h, t)+p_{S}(x, t) u(x, t) \tag{1}
\end{equation*}
$$

Taylor expansion gives: (we omit (x, t))

$$
\begin{align*}
u+u_{t} \tau+o(\tau)= & p_{L} u+\left(p_{L} u\right)_{x} h+\frac{1}{2}\left(p_{L} u\right)_{x x} h^{2}+o\left(h^{2}\right) \\
& +p_{R} u-\left(p_{R} u\right)_{x} h+\frac{1}{2}\left(p_{R} u\right)_{x x} h^{2}+o\left(h^{2}\right) \\
& +p_{S} u \tag{2}
\end{align*}
$$

Divide by τ, setting $h^{2} / \tau=2 D$ and letting $\tau, h \longrightarrow 0$, we reach

$$
\begin{equation*}
u_{t}=\left(-\lim \frac{p_{D}}{\tau}\right) u-\left(\lim \frac{p_{R}-p_{L}}{\tau} h u\right)_{x}+D\left[\left(p_{L}+p_{R}\right) u\right]_{x x} . \tag{3}
\end{equation*}
$$

From here we see that we need to further set $\frac{p_{D}}{\tau}=c$ and $\frac{p_{R}-p_{L}}{\tau} h=b$. Then we reach

$$
\begin{equation*}
u_{t}+(b u)_{x}+c u=D\left[\left(p_{L}+p_{R}\right) u\right]_{x x} . \tag{4}
\end{equation*}
$$

Note that here $b=b(x, t), c=c(x, t)$ and $p_{L}+p_{R}$ is also function of (x, t).

- Ex. 1.3. Design an underlying random walk rule which gives the equation

$$
\begin{equation*}
u_{t}=D u_{x x}+f(x, t), \quad u(x, 0)=u_{0}(x) . \tag{5}
\end{equation*}
$$

Then use it to explain the following Duhamel's principle:
Duhamel's principle. The solution to the above problem is given by

$$
\begin{equation*}
u(x, t)=U(x, t)+\int_{0}^{t} v(x, t ; s) \mathrm{d} s \tag{6}
\end{equation*}
$$

where $U(x, t)$ is the solution to

$$
\begin{equation*}
u_{t}=D u_{x x}, \quad u(x, 0)=u_{0}(x) \tag{7}
\end{equation*}
$$

and $v(x, t ; s)$ (with $t \geqslant s$) solves

$$
\begin{equation*}
v_{t}=D v_{x x}, \quad v(x, s ; s)=f(x, s) . \tag{8}
\end{equation*}
$$

Solution. The model is as follows: Consider a large amount of particles moving with equal probability to left and right with spatial step size h and time step size τ, with $h^{2} / \tau=2 D$, while $f(x, t)$ is the "rate" of particles added at location x at time t. Then we have

$$
\begin{equation*}
u(x, t+\tau)=\frac{1}{2} u(x-h, t)+\frac{1}{2} u(x+h, t)+\tau f(x, t) \tag{9}
\end{equation*}
$$

which leads to the desired equation.

[^0]From this point of view, Duhamel's principle can be understood as follows. $U(x, t)$ represents the density at time t of those particles that are present at time $t=0, v(x, t ; s)$ represents the density at time t of those particles that are added (into action) at time s. So if we consider $s=n \tau$, the density of all particles together is

$$
\begin{equation*}
u(x, t)=U(x, t)+\sum_{n=1}^{t / \tau} \tau v(x, t ; n \tau) \longrightarrow U(x, t)+\int_{0}^{t} v(x, t ; s) \mathrm{d} s \tag{10}
\end{equation*}
$$

as $\tau \longrightarrow 0$ since that second term is a Riemann sum.

- Ex. 1.5. Design a random walk rule which leads to the equation

$$
\begin{equation*}
u_{t t}-\gamma^{2} u_{x x}+c u_{x}+2 \lambda u_{t}=0 \tag{11}
\end{equation*}
$$

Solution. Consider the case $p^{ \pm}=1-\lambda^{ \pm} \tau, q^{ \pm}=\lambda^{ \pm} \tau$ where + corresponds to right moving particles $(\alpha(x, t))$ and - left moving particles $(\beta(x, t))$. Then we have

$$
\begin{align*}
\alpha(x, t+\tau) & =p^{+} \alpha(x-h, t)+q^{-} \beta(x-h, t) \tag{12}\\
\beta(x, t+\tau) & =p^{-} \beta(x+h, t)+q^{+} \alpha(x+h, t) \tag{13}
\end{align*}
$$

Taylor expand:

$$
\begin{align*}
& \alpha+\alpha_{t} \tau+o(\tau)=p^{+}\left[\alpha-\alpha_{x} h+o(h)\right]+q^{-}\left[\beta-\beta_{x} h+o(h)\right] \tag{14}\\
& \beta+\beta_{t} \tau+o(\tau)=p^{-}\left[\beta+\beta_{x} h+o(h)\right]+q^{+}\left[\alpha+\alpha_{x} h+o(h)\right] . \tag{15}
\end{align*}
$$

Setting $h / \tau=\gamma$ and substituting $p^{ \pm}=1-\lambda^{ \pm} \tau, q^{ \pm}=\lambda^{ \pm} \tau$, we obtain

$$
\begin{align*}
\alpha_{t} \tau+o(\tau) & =\left(-\lambda^{+} \tau\right)\left[\alpha-\alpha_{x} \gamma \tau\right]-\alpha_{x} \gamma \tau+\lambda^{-} \tau\left[\beta-\beta_{x} \gamma \tau\right] \tag{16}\\
\beta_{t} \tau+o(\tau) & =\left(-\lambda^{-} \tau\right)\left[\beta+\beta_{x} \gamma \tau\right]+\beta_{x} \gamma \tau+\lambda^{+} \tau\left[\alpha+\alpha_{x} \gamma \tau\right] \tag{17}
\end{align*}
$$

Dividing both sides by τ and let $\tau \longrightarrow 0$, we obtain

$$
\begin{align*}
\alpha_{t} & =-\lambda^{+} \alpha+\lambda^{-} \beta-\gamma \alpha_{x} \tag{18}\\
\beta_{t} & =-\lambda^{-} \beta+\lambda^{+} \alpha+\gamma \beta_{x} \tag{19}
\end{align*}
$$

Setting $u=\alpha+\beta, v=\alpha-\beta$, we have

$$
\begin{align*}
& u_{t}+\gamma v_{x}=0 \tag{20}\\
& v_{t}+\gamma u_{x}=-2 \lambda^{+} \alpha+2 \lambda^{-} \beta=-\left(\lambda^{+}+\lambda^{-}\right) v-\left(\lambda^{+}-\lambda^{-}\right) u \tag{21}
\end{align*}
$$

Denote $2 \lambda=\lambda^{+}+\lambda^{-}$and $\gamma\left(\lambda^{+}-\lambda^{-}\right)=-c$, we have

$$
\begin{equation*}
u_{t t}=-\gamma v_{x t}=\gamma^{2} u_{x x}-2 \lambda u_{t}-c u_{x} \tag{22}
\end{equation*}
$$

- Ex. 1.8. Consider particle moving with probabilities (p_{1}, q_{1} right/left; p_{2} / q_{2} up/down)

$$
\begin{equation*}
p_{i}(x, y)=\frac{1}{4}\left[a_{i}(x, y)+b_{i}(x, y) h\right], \quad q_{i}(x, y)=\frac{1}{4}\left[a_{i}(x, y)-b_{i}(x, y) h\right] . \tag{23}
\end{equation*}
$$

Show that for Problem No. 1 we get

$$
\begin{equation*}
a_{1} u_{x x}+a_{2} u_{y y}+2 b_{1} u_{x}+2 b_{2} u_{y}=0 \tag{24}
\end{equation*}
$$

For Problem No. 2 we get

$$
\begin{equation*}
\left(a_{1} w\right)_{x x}+\left(a_{2} w\right)_{y y}-2\left(b_{1} w\right)_{x}-2\left(b_{2} w\right)_{y}=-\delta(x-\xi) \delta(y-\eta) \tag{25}
\end{equation*}
$$

Solution.

- For problem 1, we have

$$
\begin{align*}
& u(x, y)=p_{1}(x, y) u(x+h, y)+q_{1}(x, y) u(x-h, y)+p_{2}(x, y) u(x, y+h)+q_{2}(x, y) u(x, \\
& y-h) . \tag{26}
\end{align*}
$$

Taylor expansion leads to the desired equation.

- For problem 2, we have ${ }^{2}$

$$
u(x, y)= \begin{cases}1+p_{1}(x+h, y) u(x+h, y)+\cdots & (x, y)=(\xi, \eta) \tag{27}\\ p_{1}(x+h, y) u(x+h, y)+\cdots & \text { elsewhere }\end{cases}
$$

Taylor expansion leads ${ }^{3}$ to the desired equations.
2. This seems to mean that we have to interpret $w(x, y)$ as something like the number of paths reaching (ξ, η).
3. Expand $p_{1} u$ together as $\left(p_{1} u\right)(x+h, y)=p_{1} u(x, y)+\left(p_{1} u\right)_{x} h \ldots .$.

[^0]: 1. Here a possible explanation seems to be, the particles arrive "just before" $t+\tau$ while they disappear "just after" $t+\tau$, therefore p_{D} does not explicitly appear in the difference equation.
