
Math 317 Winter 2014 Complimentary Quiz (Apr. 21, 2014)

Warning: This is not a sample exam.

(D) : Di�cult; (C) : Challenge.

Question 1. Study the convergence, continuity, and di�erentiability of
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Thus convergence, continuity and di�erentiability at all x follow from the M-test.

Question 2. Let f(x) be 2 � periodic and equals x+1 on [¡�;�]. Find its Fourier expansion
and determine the function to which the Fourier series converge to.
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The Fourier series converges to x+1 on (¡�; �) and 1 at ��.

Question 3. Let A: =fellipsoids in R3g. Find its cardinality.

Solution. An ellipsoid is determined by: center 2R3; 3 axes each 2R3. So we have A .R12�R. On the
other hand consider unit spheres centered along the x-axis, we have A&R. Therefore A�R.

Question 4. Well-order N�N. What is the ordinal number of your re-ordered set?

Question 5. Calculate the surface area of S: f(x; y; z)jx2+ y2+ z2=3; z2> 2x2+2 y2g.

Solution. First note that S has two parts. Its area is two times that of

Su := f(x; y; z)jx2+ y2+ z2=3; z> 0; z2> 2x2+2 y2g: (6)



We parametrize Su as follows: First S = f(x; y; z)j x2 + y2 + z2 = 3; x2 + y2 6 1g. Thus we can take the

parametrization:
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The area of S is then 4 3
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Question 6. Calculate Z
S
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where S := f(x; y; z)jx2+ y2+ z2=2; z>x2+ y2g with normal pointing upward

i. directly;

ii. (D) using Gauss's Theorem;

iii. (C) Can you calculate the integral using Stokes's Theorem? Explain.

Solution.
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Thus we integrate

I =

Z
x2+y261

2¡x2¡ y2
p

d(x; y)= 2�

Z
0

1

2¡ r2
p

r dr=
2
3

¡
23/2¡ 1

�
: (13)

ii. Gauss: Take V := fx2+ y2+ z26 2; z> 1; x2+ y26 1g. Then we have @V =S [Sbottom. We haveZ
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As Sbottom is the disc f(x; y; z)j z= �(x; y)=1; x2+ y261g with normal pointing downward, we have
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Question 7. Consider the in�nite series of functionsX
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a) Find all x that the series is convergent.

b) (D) Denote the sum by f(x). Discuss its continuity.

c) (C) Discuss its di�erentiability.
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where A := fx2Rj cosx2 [a; b]g.

Solution.
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b) From Abel's Theorem we know that the convergence of
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for every "> 0. So f(x) is continuous on its domain.

c) Take derivative termwise:X
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so uniform convergence on �< jxj<�¡� is obvious. Also it obviously converges at x=0. For 0< jxj<�
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whose absolute value is bounded by jsinxj.
We have for any "> 0, take � > 0 such that jsin � j<". Then we see that for all 0< jxj<�,�����X
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Thus the convergence is uniform and f is di�erentiable everywhere it is de�ned.

Question 8. (A) Let A := ff : [0; 1) 7!Rj f is a piecewise constant function.g where f is a
piecewise constant function if and only if there is a partition f0=x0<x1< ���<xn=1g such
that f is constant on each [xi; xi+1).

Solution. For each �xed 0=x0< ���<xn=1, we have the number of functions Rn�R. Now there are Rn¡1

possibilities of (x1; :::; xn¡1) so the number of functions for each n is no more than Rn� R. Finally take
union over n we have no more than N �R�R. Obviously A&R. By Schröder-Bernstein we have A�R.

Alternatively, each f is obtained through �nitely many times of the following three operations: multiply
by a2R, translate by b2R, ��ip� horizontally, on the step function.


