Math 317 Winter 2014 Complimentary Quiz (Apr. 21, 2014)

Warning: This is not a sample exam.

(D) : Difficult;
(C) : Challenge.

Question 1. Study the convergence, continuity, and differentiability of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sin \left(\left(\frac{n+1}{n}\right)^{n} x\right)}{(n+1) n} \tag{1}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
\left|\frac{\sin \left(\left(\frac{n+1}{n}\right)^{n} x\right)}{(n+1) n}\right| \leqslant \frac{1}{(n+1) n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left[\frac{\sin \left(\left(\frac{n+1}{n}\right)^{n} x\right)}{(n+1) n}\right]^{\prime}\right| \leqslant\left(\frac{n+1}{n}\right)^{n} \frac{1}{(n+1) n}<\frac{e}{(n+1) n} . \tag{3}
\end{equation*}
$$

Thus convergence, continuity and differentiability at all x follow from the M-test.
Question 2. Let $f(x)$ be 2π periodic and equals $x+1$ on $[-\pi, \pi]$. Find its Fourier expansion and determine the function to which the Fourier series converge to.

Solution. We have

$$
\begin{equation*}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}(x+1) \mathrm{d} x=2 . \tag{4}
\end{equation*}
$$

We can see that $a_{n}=0$ and

$$
\begin{align*}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}(x+1) \sin (n x) \mathrm{d} x \\
& =\frac{1}{-n \pi} \int_{-\pi}^{\pi}(x+1) \mathrm{d} \cos (n x) \\
& =-\frac{1}{n \pi}\left[\left.(x+1) \cos (n x)\right|_{-\pi} ^{\pi}-\int_{-\pi}^{\pi} \cos (n x) \mathrm{d} x\right] \\
& =-\frac{1}{n \pi}\left[(\pi+1)(-1)^{n}-(-\pi+1)(-1)^{n}\right] \\
& =\frac{2(-1)^{n+1}}{n} . \tag{5}
\end{align*}
$$

The Fourier series converges to $x+1$ on $(-\pi, \pi)$ and 1 at $\pm \pi$.
Question 3. Let $A:=\left\{\right.$ ellipsoids in $\left.\mathbb{R}^{3}\right\}$. Find its cardinality.
Solution. An ellipsoid is determined by: center $\in \mathbb{R}^{3}, 3$ axes each $\in \mathbb{R}^{3}$. So we have $A \lesssim \mathbb{R}^{12} \sim \mathbb{R}$. On the other hand consider unit spheres centered along the x-axis, we have $A \gtrsim \mathbb{R}$. Therefore $A \sim \mathbb{R}$.

QUESTION 4. Well-order $\mathbb{N} \times \mathbb{N}$. What is the ordinal number of your re-ordered set?
Question 5. Calculate the surface area of $S:\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=3, z^{2} \geqslant 2 x^{2}+2 y^{2}\right\}$.
Solution. First note that S has two parts. Its area is two times that of

$$
\begin{equation*}
S_{u}:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=3, z \geqslant 0, z^{2} \geqslant 2 x^{2}+2 y^{2}\right\} . \tag{6}
\end{equation*}
$$

We parametrize S_{u} as follows: First $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=3, x^{2}+y^{2} \leqslant 1\right\}$. Thus we can take the parametrization: $\binom{u}{\sqrt{3-u^{2}-v^{2}}}, D=\left\{(u, v) \mid u^{2}+v^{2} \leqslant 1\right\}$. We calculate

$$
\boldsymbol{r}_{u}=\left(\begin{array}{c}
1 \tag{7}\\
0 \\
-\frac{u}{\sqrt{3-u^{2}-v^{2}}}
\end{array}\right), \quad \boldsymbol{r}_{v}=\left(\begin{array}{c}
0 \\
1_{v} \\
-\frac{{ }^{3-u^{2}-v^{2}}}{\sqrt{3-}}
\end{array}\right) .
$$

This gives

$$
\begin{equation*}
E=1+\frac{u^{2}}{3-u^{2}-v^{2}}, \quad F=\frac{u v}{3-u^{2}-v^{2}}, \quad G=1+\frac{v^{2}}{3-u^{2}-v^{2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
E G-F^{2}=1+\frac{u^{2}+v^{2}}{3-u^{2}-v^{2}}=\frac{3}{3-u^{2}-v^{2}} \tag{9}
\end{equation*}
$$

(Alternatively, since the surface is given by $z=\phi(x, y)$ where $\phi(x, y):=\sqrt{3-x^{2}-y^{2}}$, we have Area $\left(S_{u}\right)=$ $\left.\int_{D} \sqrt{1+\phi_{x}^{2}+\phi_{y}^{2}} \mathrm{~d}(x, y)\right)$

Thus

$$
\begin{align*}
\operatorname{Area}\left(S_{u}\right) & =\int_{D} \sqrt{E G-F^{2}} \mathrm{~d}(u, v) \\
& =\int_{u^{2}+v^{2} \leqslant 1} \sqrt{\frac{3}{3-u^{2}-v^{2}}} \mathrm{~d}(u, v) \\
& =2 \pi \int_{0}^{1} \sqrt{\frac{3}{3-r^{2}}} r \mathrm{~d} r \\
& =\sqrt{3} \pi \int_{0}^{1} \frac{1}{\sqrt{3-u}} \mathrm{~d} u \\
& =\sqrt{3} \pi[-2 \sqrt{3-u}]_{0}^{1} \\
& =2 \sqrt{3} \pi[\sqrt{3}-\sqrt{2}] \tag{10}
\end{align*}
$$

The area of S is then $4 \sqrt{3} \pi[\sqrt{3}-\sqrt{2}]$.

Question 6. Calculate

$$
\int_{S}\left(\begin{array}{c}
1 \tag{11}\\
2 \\
z
\end{array}\right) \cdot \mathbf{d} \mathbf{S}
$$

where $S:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=2, z \geqslant x^{2}+y^{2}\right\}$ with normal pointing upward
i. directly;
ii. (D) using Gauss's Theorem;
iii. (C) Can you calculate the integral using Stokes's Theorem? Explain.

Solution.

i. $z=x^{2}+y^{2}$ at $x^{2}+y^{2}=1$. Therefore $S=\left\{z=\sqrt{2-x^{2}-y^{2}}, x^{2}+y^{2} \leqslant 1\right\}$. We have

$$
\boldsymbol{n} \mathrm{d} S=\left(\begin{array}{c}
-z_{x} \tag{12}\\
-z_{y} \\
1
\end{array}\right) \mathrm{d}(x, y)=\left(\begin{array}{c}
\frac{x}{\sqrt{2-x^{2}-y^{2}}} \\
\frac{y}{\sqrt{2-x^{2}-y^{2}}} \\
1
\end{array}\right) \mathrm{d}(x, y)
$$

Thus we integrate

$$
\begin{equation*}
I=\int_{x^{2}+y^{2} \leqslant 1} \sqrt{2-x^{2}-y^{2}} \mathrm{~d}(x, y)=2 \pi \int_{0}^{1} \sqrt{2-r^{2}} r \mathrm{~d} r=\frac{2}{3}\left(2^{3 / 2}-1\right) \tag{13}
\end{equation*}
$$

ii. Gauss: Take $V:=\left\{x^{2}+y^{2}+z^{2} \leqslant 2, z \geqslant 1, x^{2}+y^{2} \leqslant 1\right\}$. Then we have $\partial V=S \cup S_{\text {bottom }}$. We have

$$
\begin{equation*}
\int_{V} \mathrm{~d} \boldsymbol{x}=\int_{S}+\int_{S_{\mathrm{bottom}}} \tag{14}
\end{equation*}
$$

Now we calculate

$$
\begin{aligned}
\int_{V} \mathrm{~d} \boldsymbol{x} & =\int_{x^{2}+y^{2} \leqslant 1}\left[\int_{1}^{\sqrt{2-x^{2}-y^{2}}} \mathrm{~d} z\right] \mathrm{d}(x, y) \\
& =\int_{x^{2}+y^{2} \leqslant 1}\left[\sqrt{2-x^{2}-y^{2}}-1\right] \mathrm{d}(x, y)=\frac{2}{3}\left(2^{3 / 2}-1\right)-\pi
\end{aligned}
$$

As $S_{\text {bottom }}$ is the disc $\left\{(x, y, z) \mid z=\phi(x, y)=1, x^{2}+y^{2} \leqslant 1\right\}$ with normal pointing downward, we have

$$
\int_{S_{\mathrm{bottom}}}\left(\begin{array}{l}
1 \tag{15}\\
2 \\
z
\end{array}\right) \cdot \mathbf{d} \boldsymbol{S}=\int_{x^{2}+y^{2} \leqslant 1}\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)=-\pi
$$

Thus

$$
\int_{S}\left(\begin{array}{l}
1 \tag{16}\\
2 \\
z
\end{array}\right) \cdot \mathbf{d} \boldsymbol{S}=\frac{2}{3}\left(2^{3 / 2}-1\right)
$$

iii. No. Because if $\left(\begin{array}{l}1 \\ 2 \\ z\end{array}\right)=\nabla \times \boldsymbol{f}$, then we must have $\operatorname{div}\left(\begin{array}{c}1 \\ 2 \\ z\end{array}\right)=0$ which is not satisfied. Or more directly, we need to solve

$$
\begin{equation*}
h_{y}-g_{z}=1, \quad f_{z}-h_{x}=2, \quad g_{x}-f_{y}=z \tag{17}
\end{equation*}
$$

Taking $\frac{\partial}{\partial x}$ of the first equation and $\frac{\partial}{\partial y}$ of the second equation we have

$$
\begin{equation*}
g_{x z}=h_{x y}=f_{y z} \tag{18}
\end{equation*}
$$

But taking $\frac{\partial}{\partial z}$ of the 3rd equation we have $g_{x z}-f_{y z}=1$. Thus it is not possible to find \boldsymbol{f} such that $\left(\begin{array}{l}1 \\ 2 \\ z\end{array}\right)=\nabla \times \boldsymbol{f}$.

Question 7. Consider the infinite series of functions

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(\cos x)^{n} \tag{19}
\end{equation*}
$$

a) Find all x that the series is convergent.
b) (D) Denote the sum by $f(x)$. Discuss its continuity.
c) (C) Discuss its differentiability.

Exercise 1. Prove the following:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} u^{n} \text { converges/diverges at } u=\cos x & \Leftrightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(\cos x)^{n} \text { converges/diverges at } x \\
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} u^{n} \text { converges uniformly on }[a, b] & \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(\cos x)^{n} \text { converges uniformly on } A
\end{aligned}
$$

where $A:=\{x \in \mathbb{R} \mid \cos x \in[a, b]\}$.

Solution.

a) We know that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} u^{n}$ converges for all $|u| \leqslant 1$ except $u=-1$. Thus $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(\cos x)^{n}$ converges for all $x \in \mathbb{R}$ except $x=(2 k+1) \pi$ for $k \in \mathbb{Z}$.
b) From Abel's Theorem we know that the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} u^{n}$ is uniform on $(-1+\varepsilon, 1]$ for all $\varepsilon>0$. Thus the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(\cos x)^{n}$ is uniform on $\cup_{k \in \mathbb{Z}}((2 k-1) \pi+\varepsilon,(2 k+1) \pi-\varepsilon)$ for every $\varepsilon>0$. So $f(x)$ is continuous on its domain.
c) Take derivative termwise:

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n+1}(\cos x)^{n-1} \sin x=-\frac{\sin x}{\cos x} \sum_{n=1}^{\infty}(-\cos x)^{n} \tag{20}
\end{equation*}
$$

so uniform convergence on $\delta<|x|<\pi-\delta$ is obvious. Also it obviously converges at $x=0$. For $0<|x|<\delta$ we have

$$
\begin{equation*}
\sin x \sum_{n=N}^{\infty}(-\cos x)^{n-1}=\sin x(-\cos x)^{N-1} \frac{1}{1+\cos x} \tag{21}
\end{equation*}
$$

whose absolute value is bounded by $|\sin x|$.
We have for any $\varepsilon>0$, take $\delta>0$ such that $|\sin \delta|<\varepsilon$. Then we see that for all $0<|x|<\delta$,

$$
\begin{equation*}
\left|\sum_{n=N}^{\infty}(-\cos x)^{n-1} \sin x\right|=|\sin x||\cos x|^{N-1} \frac{1}{1+\cos x}<\varepsilon \tag{22}
\end{equation*}
$$

Thus the convergence is uniform and f is differentiable everywhere it is defined.
QUESTION 8. (A) Let $A:=\{f:[0,1) \mapsto \mathbb{R} \mid f$ is a piecewise constant function. $\}$ where f is a piecewise constant function if and only if there is a partition $\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ such that f is constant on each $\left[x_{i}, x_{i+1}\right)$.

Solution. For each fixed $0=x_{0}<\cdots<x_{n}=1$, we have the number of functions $\mathbb{R}^{n} \sim \mathbb{R}$. Now there are \mathbb{R}^{n-1} possibilities of $\left(x_{1}, \ldots, x_{n-1}\right)$ so the number of functions for each n is no more than $\mathbb{R}^{n} \sim \mathbb{R}$. Finally take union over n we have no more than $\mathbb{N} \cdot \mathbb{R} \sim \mathbb{R}$. Obviously $A \gtrsim \mathbb{R}$. By Schröder-Bernstein we have $A \sim \mathbb{R}$.

Alternatively, each f is obtained through finitely many times of the following three operations: multiply by $a \in \mathbb{R}$, translate by $b \in \mathbb{R}$, "flip" horizontally, on the step function.

