Math 317 Quiz 5 Solutions

Mar. 17, 2014

- The quiz has three problems. Total $10+1$ points. It should be completed in 20 minutes.

Question 1. (5 pts) Let A be the set of all finite rectangles in \mathbb{R}^{2}. Find its cardinality. Justify your answer.

Solution. First for any $x \in \mathbb{R},[0, x]^{2} \in A$. Therefore $A \gtrsim \mathbb{R}$; On the other hand we have the following injection $f: A \mapsto \mathbb{R}^{8}$:

$$
\begin{equation*}
R \mapsto\left(a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}\right) \tag{1}
\end{equation*}
$$

where $\left(a_{i}, b_{i}\right)$ are coordinates of the vertices.
Therefore $A \lesssim \mathbb{R}^{8}$. But $\mathbb{R}^{8} \sim \mathbb{R}$. Thus by Schroeder-Bernstein $A \sim \mathbb{R}$, that is the cardinality is \mathfrak{c}.

Remark. I should have specified that the rectangles should be compact. But looks like nobody's solution was actually affected by this anyway.

Question 2. (5 pts) Re-order \mathbb{N} to have ordinal number $\omega^{2}+\omega \cdot 2+1$.
Solution. For $k \in \mathbb{N}$, let $A_{k}:=\{n \in \mathbb{N} \mid n$ has exactly k prime factors $\}$ ordered by the natural order. Then we have

$$
\begin{equation*}
\mathbb{N}=\{1\} \cup_{k=1}^{\infty} A_{k} \tag{2}
\end{equation*}
$$

and we can re-order \mathbb{N} as

$$
\begin{equation*}
A_{3}<A_{4}<\cdots<A_{1}<A_{2}<1 \tag{3}
\end{equation*}
$$

Question 3. (1 bonus pt) Prove the following theorem due to Paul du BoisReymond (1831-1889):

Given any sequence of functions $f_{m}: \mathbb{N} \mapsto \mathbb{N}, m=1,2,3, \ldots$, there is a function $f: \mathbb{N} \mapsto \mathbb{N}$ such that

$$
\begin{equation*}
\forall m \in \mathbb{N}, \quad \lim _{n \rightarrow \infty} \frac{f_{m}(n)}{f(n)}=0 \tag{4}
\end{equation*}
$$

Solution. Let

$$
\begin{equation*}
f(n):=n \sum_{k=1}^{n} f_{k}(n) \tag{5}
\end{equation*}
$$

Then we have for any fixed m, when $n>m$,

$$
\begin{equation*}
f(n)=n\left[f_{1}(n)+\cdots+f_{n}(n)\right]>n f_{m}(n) . \tag{6}
\end{equation*}
$$

Thus $\lim _{n \rightarrow \infty} \frac{f_{m}(n)}{f(n)}=0$ as desired.

