Name:
ID:

Math 317 Quiz 4 Solutions

Mar. 3, 2014

- The quiz has three problems. Total $10+1$ points. It should be completed in 20 minutes.

Question 1. (5 PTs) Find a power series $\sum_{n=1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ such that $\forall n a_{n} \neq 0$ and its radius of convergence $\neq\left(\limsup _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|\right)^{-1}$.
Solution. $a_{n}=\left\{\begin{array}{ll}2 & n \text { even } \\ 1 & n \text { odd }\end{array}\right.$. The radius of convergence is

$$
\begin{equation*}
\left(\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}\right)^{-1}=1 \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
\left(\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\right)^{-1}=\frac{1}{2} \tag{2}
\end{equation*}
$$

Question 2. (5 pts) Let $f(x)$ be periodic with period 2π and equals x^{2} on $[-\pi, \pi]$. Calculate the Fourier expansion of f on $[-\pi, \pi]$.
Solution. As f is even $b_{n}=0$. We have

$$
\begin{equation*}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \mathrm{~d} x=\frac{2}{3} \pi^{2} . \tag{3}
\end{equation*}
$$

For $n \geqslant 1$ we have

$$
\begin{align*}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos (n x) \mathrm{d} x \\
& =\frac{1}{n \pi} \int_{-\pi}^{\pi} x^{2} \operatorname{dsin}(n x) \\
& =-\frac{2}{n \pi} \int_{-\pi}^{\pi} \sin (n x) x \mathrm{~d} x \\
& =\frac{2}{n^{2} \pi} \int_{-\pi}^{\pi} x \operatorname{d} \cos (n x) \\
& =\frac{2}{n^{2} \pi}\left[\pi \cos (n \pi)-(-\pi) \cos (-n \pi)-\int_{-\pi}^{\pi} \cos (n x) \mathrm{d} x\right] \\
& =\frac{4}{n^{2}}(-1)^{n} . \tag{4}
\end{align*}
$$

Thus the Fourier expansion therefore is

$$
\begin{equation*}
x^{2} \sim \frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \cos (n x) . \tag{5}
\end{equation*}
$$

QUESTION 3. (1 BONUS PT) Use the result from the previous problem to prove $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Solution. We prove that $f(x)$ is Holder continuous at $x=\pi$. Once this is done the convergence theory of Fourier series yields

$$
\begin{equation*}
\pi^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \cos (n \pi)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}} \tag{6}
\end{equation*}
$$

and the conclusion follows immediately.
Since $f(x)$ has period 2π, we have

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & x \in[-\pi, \pi] \tag{7}\\
(x-2 \pi)^{2} & x \in[\pi, 3 \pi]
\end{array} .\right.
$$

Thus for any $x \in(0,2 \pi)$ we have

$$
\begin{align*}
|f(x)-f(\pi)| & = \begin{cases}\left|x^{2}-\pi^{2}\right| & x \in(0, \pi) \\
\left|(x-2 \pi)^{2}-\pi^{2}\right| & x \in(\pi, 2 \pi)\end{cases} \\
& = \begin{cases}|x+\pi| \cdot|x-\pi| & x \in(0, \pi) \\
|x-3 \pi| \cdot|x-\pi| & x \in(\pi, 2 \pi)\end{cases} \\
& <2 \pi|x-\pi| . \tag{8}
\end{align*}
$$

Therefore $f(x)$ is Holder continuous at $x=\pi$ and (6) is justified.

