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e The quiz has three problems. Total 10 4 1 points. It should be completed
in 20 minutes.

Question 1. (5 pts) Prove by definition that
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converges uniformly to 0 on [0, 1].

Solution. For any € >0, take N >max {5, '}, then for any n > N,
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Question 2. (5 pts)

a) Find a positive convergent series y_ | an such that
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limsup > 1. (3)
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b) Find a positive series ZZO:1 ay such that limsup,_ \an|1/" > 1 but the
following does not hold:

INeN, Yn>N,  |ap|'/">1. (4)

Solution.

a) Take a, = #

b) Take a, =[14 (—1)"] 2™
Question 3. (1 bonus pt) Prove that
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converges uniformly on (0,00).

Solution. Take any R > 1. For 0 <z < %, we have

xsm<n41$2>‘ S% (6)
For — <& <00, we have
o ( n41:L’2 )' nfo nix 7;[2 (")
Therefore we have
Va € (0, 00), xsm<n4x2>'<;2 (8)

Thus by Weierstrass’ M-test the series converges uniformly on (0, c0).

Remark 4. Alternatively, define u(z):= z sin (1/2%). Then
T sin <L> =n"2u(n’r) (9)
nt x? '
We can prove that u(z) is uniformly bounded on (0, 00) which again leads to
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