Math 317 Quiz 3 Solutions

Feb. 3, 2014

- The quiz has three problems. Total $10+1$ points. It should be completed in 20 minutes.

Question 1. (5 pts) Prove by definition that

$$
\begin{equation*}
f_{n}(x)=\frac{n x^{3}+5}{3 n^{2}+7} \tag{1}
\end{equation*}
$$

converges uniformly to 0 on $[0,1]$.
Solution. For any $\varepsilon>0$, take $N>\max \left\{5, \varepsilon^{-1}\right\}$, then for any $n>N$,

$$
\begin{equation*}
\left|\frac{n x^{3}+5}{3 n^{2}+7}\right| \leqslant \frac{n+5}{3 n^{2}+7}<\frac{2 n}{2 n^{2}}<\frac{1}{n}<\frac{1}{N}<\varepsilon . \tag{2}
\end{equation*}
$$

Question 2. (5 pts)
a) Find a positive convergent series $\sum_{n=1}^{\infty} a_{n}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1 . \tag{3}
\end{equation*}
$$

b) Find a positive series $\sum_{n=1}^{\infty} a_{n}$ such that $\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}>1$ but the following does not hold:

$$
\begin{equation*}
\exists N \in \mathbb{N}, \quad \forall n>N, \quad\left|a_{n}\right|^{1 / n} \geqslant 1 . \tag{4}
\end{equation*}
$$

Solution.
a) Take $a_{n}=\frac{2+(-1)^{n}}{n^{2}}$.
b) Take $a_{n}=\left[1+(-1)^{n}\right] 2^{n}$.

Question 3. (1 bonus pt) Prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} x \sin \left(\frac{1}{n^{4} x^{2}}\right) \tag{5}
\end{equation*}
$$

converges uniformly on $(0, \infty)$.
Solution. Take any $R>1$. For $0<x \leqslant \frac{1}{n^{2}}$, we have

$$
\begin{equation*}
\left|x \sin \left(\frac{1}{n^{4} x^{2}}\right)\right| \leqslant \frac{1}{n^{2}} . \tag{6}
\end{equation*}
$$

For $\frac{1}{n^{2}}<x<\infty$, we have

$$
\begin{equation*}
\left|x \sin \left(\frac{1}{n^{4} x^{2}}\right)\right|<\frac{x}{n^{4} x^{2}}=\frac{1}{n^{4} x}<\frac{1}{n^{2}} . \tag{7}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\forall x \in(0, \infty), \quad\left|x \sin \left(\frac{1}{n^{4} x^{2}}\right)\right| \leqslant \frac{1}{n^{2}} \tag{8}
\end{equation*}
$$

Thus by Weierstrass' M-test the series converges uniformly on $(0, \infty)$.

Remark 4. Alternatively, define $u(x):=x \sin \left(1 / x^{2}\right)$. Then

$$
\begin{equation*}
x \sin \left(\frac{1}{n^{4} x^{2}}\right)=n^{-2} u\left(n^{2} x\right) . \tag{9}
\end{equation*}
$$

We can prove that $u(x)$ is uniformly bounded on $(0, \infty)$ which again leads to

$$
\begin{equation*}
\forall x \in(0, \infty), \quad\left|x \sin \left(\frac{1}{n^{4} x^{2}}\right)\right| \leqslant \frac{1}{n^{2}} \tag{10}
\end{equation*}
$$

