Name: ID:

## Math 317 Quiz 2 Solutions

Jan. 20, 2014

- The quiz has three problems. Total $10+1$ points. It should be completed in 20 minutes.

Question 1. (5 pts) Prove the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!} \tag{1}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{((n+1)!)^{3} /(3 n+3)!}{(n!)^{3} /(3 n)!}=\frac{(n+1)^{3}}{(3 n+3)(3 n+2)(3 n+1)} . \tag{2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{27}<1 \tag{3}
\end{equation*}
$$

and convergence follows from ratio test.
Question 2. (5 pts) Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be two sequences of real numbers satisfying the following:
i. There is $M>0$ such that for all $n \in \mathbb{N},\left|\sum_{m=1}^{n} a_{m}\right|<M$;
ii. $\lim _{n \rightarrow \infty} b_{n}=0$.

Does it follow that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges? Justify your answer.
Proof.
No. We take $a_{n}=(-1)^{n}, b_{n}=\frac{(-1)^{n}}{n}$.
Question 3. ( $\mathbf{1}$ bonus pt) Let $\sum_{n=1}^{\infty} a_{n}$ be a divergent positive series. Discuss the convergence/divergence of $\sum_{n=1}^{\infty} \frac{a_{n}}{1+n a_{n}}$. Justify your answer (If it must converge or must diverge, prove; Otherwise give one example of convergence and one of divergence).

Solution. Taking $a_{n}=\frac{1}{n}$ we have divergence; Taking $a_{n}= \begin{cases}\frac{1}{k} & n=k^{2} \\ 0 & n \text { not a square }\end{cases}$ we have divergence of $\sum_{n=1}^{\infty} a_{n}$ while convergence of $\sum_{n=1}^{\infty} \frac{a_{n}}{1+n a_{n}}$ since

$$
\frac{a_{n}}{1+n a_{n}}= \begin{cases}\frac{1}{k(k+1)} & n=k^{2}  \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

So the series sum up to 1 .

