Name:
ID:

Math 317 Quiz 1 Solutions

Jan. 8, 2014

- The quiz has three problems. Total $10+1$ points. It should be completed in 20 minutes.

Question 1. (5 pts) Prove by definition or Cauchy criterion that $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ converges and find its value.

Proof.

- By definition.

We have

$$
\begin{align*}
& S_{n}=\frac{2}{3}+\cdots+\left(\frac{2}{3}\right)^{n}=\frac{2}{3}\left[1+\cdots+\left(\frac{2}{3}\right)^{n-1}\right]=\frac{2}{3} \cdot \frac{1-(2 / 3)^{n}}{1-(2 / 3)}= \\
& 2-2 \cdot\left(\frac{2}{3}\right)^{n} . \tag{1}
\end{align*}
$$

Taking limit $\lim _{n \rightarrow \infty} S_{n}=2$. Therefore the series converges to 2 .

- By Cauchy.

For any $\varepsilon>0$, take $N>\log _{3 / 2}(3 / \varepsilon)$, then for any $m>n>N$, we have

$$
\begin{align*}
\left|\left(\frac{2}{3}\right)^{n+1}+\cdots+\left(\frac{2}{3}\right)^{m}\right| & =\left(\frac{2}{3}\right)^{n+1}\left[1+\cdots+\left(\frac{2}{3}\right)^{m-n-1}\right] \\
& =\left(\frac{2}{3}\right)^{n+1} \cdot \frac{1-(2 / 3)^{m-n}}{1-(2 / 3)} \\
& <3 \cdot\left(\frac{2}{3}\right)^{n+1}<3 \cdot\left(\frac{2}{3}\right)^{N}<\varepsilon \tag{2}
\end{align*}
$$

Therefore the series is Cauchy and converges. To find its value, we calculate

$$
\begin{equation*}
\frac{3}{2} \cdot \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}-\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=1 \Longrightarrow \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}=2 \tag{3}
\end{equation*}
$$

Question 2. (5 pts) Prove by definition that $\sum_{n=1}^{\infty}(-1)^{n}$ does not converge.
Proof. We easily calculate:

$$
S_{n}=\left\{\begin{array}{ll}
-1 & n \text { odd } \tag{4}\\
0 & n \text { even }
\end{array} .\right.
$$

Assume $\lim _{n \rightarrow \infty} S_{n}=L$. Then there is $N \in \mathbb{N}$ such that for all $n>N,\left|S_{n}-L\right|<$ $1 / 2$. This implies $|-1-L|<1 / 2$ and $|L|<1 / 2$. Contradiction. Therefore $\lim _{n \rightarrow \infty} S_{n}$ does not exist and the original series does not converge.

Question 3. (1 bonus pt) Prove that if a_{n} satisfy $0<a_{n}<a_{2 n}+a_{2 n+1}$ for all $n \geqslant 1$, then $\sum_{n=1}^{\infty} a_{n}$ does not converge to a finite number.

Proof. We prove that the series is not Cauchy. For any $N \in \mathbb{N}$, take $k \in \mathbb{N}$ such that $2^{k}>N$. Then we have

$$
\begin{align*}
\left|a_{2^{k}}+\cdots+a_{2^{k+1}-1}\right| & =\left(a_{2^{k}}+a_{2^{k}+1}\right)+\left(a_{2^{k}+2}+a_{2^{k}+3}\right)+\cdots+\left(a_{2^{k+1}-2}+\right. \\
& \left.a_{2^{k+1}-1}\right) \\
& >a_{2^{k-1}}+a_{2^{k-1}+1}+\cdots+a_{2^{k}-1} \\
& >a_{2^{k-2}}+\cdots+a_{2^{k-1}-1} \\
& \vdots \\
& >a_{1}>0 . \tag{5}
\end{align*}
$$

Thus the series is not Cauchy and cannot converge to a finite number.

