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The purpose of this special lecture note is to discuss the continuity, integrability, and differen-
tiability of the function

f(x)8
∑

n=1

∞

sin (nx)
n2 . (1)

1. The function is defined for all x∈R.

Proof. Let x∈R be arbitrary. Then we have
∣

∣

∣

∣

sin (nx)

n2

∣

∣

∣

∣

6
1

n2
. (2)

As
∑

n=1
∞ 1

n2 converges, by Comparison Theorem we have the convergence of
∑

n=1
∞ sin (n x)

n2 . �

2. The function is continuous on R.

Proof. We prove the convergence is uniform on R. This follows immediately from (2), the

convergence of
∑

n=1
∞ 1

n2 , and Weierstrass’ M-test.

Now since for each fixed n,
sin (n x)

n2 is continuous on R, f(x) is also continuous on R. �

3. The function is Riemann integrable on any compact interval [a, b]⊂R, and furthermore

∫

a

b

f(x) dx =
∑

n=1

∞ ∫

a

b sin (nx)

n2 dx. (3)

Proof. This follows immediately from the uniform convergence we have just proved. �

4. The function is differentiable at every x� 2 k π (k ∈Z), and furthermore at such x,

f ′(x) =
∑

n=1

∞

cos (nx)

n
. (4)

Proof. Since
(

sin (nx)

n2

)

′

=
cos (nx)

n
, (5)

all we need to show is the uniform convergence of

∑

n=1

∞

cos (nx)
n

. (6)

First it is clear that the series does not converge for x = 2 k π for any k ∈ Z. Thus in the
following we focus on x� 2 k π.

To prove the convergence we apply Abel’s re-summation trick:

• First we obtain a good formula for

Sn(x)8 cosx+� + cos (nx). (7)
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We have

Sn(x) =
sin (x/2)
sin (x/2)

[cosx +� + cos (nx)]

=
1

sin (x/2)
[sin (x/2) cosx +� + sin (x/2) cos (nx)]

=
1

2 sin (x/2)

[(

sin
(

x +
x

2

)

− sin
(

x −
x

2

))

+ � +
(

sin
(

n x +
x

2

)

−

sin
(

nx−
x

2

))]

=
sin (n x+ x/2)

2 sin (x/2)
− 1/2. (8)

We see that for any compact interval [a, b] not containing 2 k π, there is M =M(a, b)
(that is, depending on a, b – more precisely depending on the distance between a, b

and the nearest 2 k π) such that

∀n∈N, ∀x∈ [a, b], |Sn(x)|< M. (9)

• Now we apply the re-summation trick. For any m > n, we have
∣

∣

∣

∣

cos ((n+1) x)
n +1

+� +
cos (mx)

m

∣

∣

∣

∣

=

∣

∣

∣

∣

Sn+1(x)−Sn(x)
n +1

+� +
Sm(x)−Sm−1(x)

m

∣

∣

∣

∣

=

∣

∣

∣

∣

Sm(x)
m

−
Sn(x)
n+ 1

+ Sn+1(x)

(

1
n+1

−

1
n+2

)

+� + Sm−1(x)

(

1
m− 1

−
1
m

)
∣

∣

∣

∣

6
M

m
+

M

n +1
+ M

[(

1
n+1

−
1

n+ 2

)

+ � +
(

1
m− 1

−
1
m

)]

=
2 M

n+1
. (10)

Note that this holds for every x∈ [a, b].

• Finally we prove uniform convergence.

Taking m→∞ in the above estimate, we have (denote the limit function by φ(x))

∀n∈N, ∀x∈ [a, b], |φ(x)−Sn(x)|6
2 M

n +1
. (11)

Now let ε > 0 be arbitrary. Take N >
2 M

ε
. Then for every n >N and every x∈ [a, b],

we have

|φ(x)−Sn(x)|6
2M

n+ 1
<

2 M

N
< ε. (12)

Thus Sn(x)� φ(x) uniformly on [a, b].

Now take any x � 2 k π. There is a < x < b such that [a, b] does not contain any 2 k π. We

see that
∑

n=1
∞ cos (n x)

n
converges uniformly on [a, b]. Consequently f(x) is differentiable on

(a, b) and in particular at x. �

5. The function is not differentiable at every x= 2 k π (k ∈Z).
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Proof. Again thanks to periodicity, all we need to prove is f ′(0) does not exist. We achieve
this through proving

lim
m→∞

f(1/m)− f(0)
1/m

= +∞. (13)

Clearly f(0) = 0. We have

f(1/m)

1/m
=

∑

n=1

∞ sin
( n

m

)

n2/m

=
∑

n=1

m
1

n

sin (n/m)

n/m
+m

∑

n=m+1

∞

sin (n/m)

n2
.

We denote the two sums by A and B.

• Estimate of A.

It is easy to prove that
sinx

x
is decreasing on (0, π/2). Thus for each term in A we

have
n

m
6 1�

sin (n/m)
n/m

>
sin 1

1
. (14)

Therefore

A > c
∑

n=1

m
1
n

(15)

where c8 (sin 1)/1 > 0 is a fixed constant.

• Estimate of B.

We have

|B |6m
∑

n=m+1

∞

1

n2 <m
∑

n=m+1

∞

1
(n− 1) n

= m
∑

n=m+1

∞ [

1
n− 1

−
1
n

]

= 1. (16)

Putting the estimates together, we have

f(1/m)
1/m

> c
∑

n=1

m
1
n
− 1 (17)

whose limit is obviously ∞ as m→∞.

Thus we have found a sequence xm� 0 such that

lim
m→∞

f(xm)− f(0)
xm − 0

= +∞ (18)

and it follows that f cannot be differentiable at 0. �

Exercise 1. Prove that
sin x

x

is decreasing on (0, π).

Remark 1. Riemann proposed1 the following function

g(x): =
∑

n=1

∞

sin (n2 x)
n2 (19)

1. There is no official record, but Weierstrass stated in a 1875 letter that he “knew” Riemann had constructed this function

as early as 1861.
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as a candidate for “everywhere continuous but nowhere differentiable” functions. g(x) may look
similar to f(x) but the replacement of sin (n x) by sin (n2 x) totally changed the game. The
continuity part is as trivial as that for f(x), but the differentiability part is much more difficult. G.
H. Hardy in 1916 prove that g(x) is indeed not differentiable at x when x/π � Q. Joseph L. Gerver2

finally proved in 1970/1972 that g ′(x) = −
1

2
at all points of the form

2 r + 1

2 s+ 1
π where r, s ∈ Z, and

g(x) is not differentiable at every other rational multiple of π. Thus the differentiability of g(x) is
completely understood.

The function g(x) played roles in many mathematical fields, including number theory, fractals,
and partial differential equations.

Problem 1. Study the continuity of another function proposed by Riemann in his Habilitationsschrift:

h(x)8
∑

n=1

∞

u(n x)

n2
(20)

where u(t) satisfies:

1. u(t) is periodic with period 1, that is u(t + 1) = u(t) for all t∈R.

2. u
( 1

2

)

= 0.

3. u(t) = t for t∈ [0, 1/2) and u(t) = t− 1 for t∈ (1/2, 1).

Exercise 2. Plot the partial sums of all the above pathological functions: f(x), g(x), h(x), together with

• The function proposed by Weierstrass:

w(x)8
∑

n=1

∞

an cos (bn π x) (21)

where 0 <a < 1, b an odd integer, a b > 1.3

• The function proposed by van der Waerden: See §4.2 of this week (Week 2)’s notes.

for different n’s (for example n = 5, 10, 20, 50, 100, etc.).

2. Now at Rutgers University: http://math.camden.rutgers.edu/faculty/.

3. Weierstrass originally required a b > 1 +
3 π

2
. Hardy in 1916 relaxed it to a b > 1. You should try different a, b and see

what happens.
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