The function $f(x):=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$

Jandary 20, 2014

The purpose of this special lecture note is to discuss the continuity, integrability, and differentiability of the function

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}} . \tag{1}
\end{equation*}
$$

1. The function is defined for all $x \in \mathbb{R}$.

Proof. Let $x \in \mathbb{R}$ be arbitrary. Then we have

$$
\begin{equation*}
\left|\frac{\sin (n x)}{n^{2}}\right| \leqslant \frac{1}{n^{2}} . \tag{2}
\end{equation*}
$$

As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, by Comparison Theorem we have the convergence of $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$.
2. The function is continuous on \mathbb{R}.

Proof. We prove the convergence is uniform on \mathbb{R}. This follows immediately from (2), the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, and Weierstrass' M-test.

Now since for each fixed $n, \frac{\sin (n x)}{n^{2}}$ is continuous on $\mathbb{R}, f(x)$ is also continuous on \mathbb{R}.
3. The function is Riemann integrable on any compact interval $[a, b] \subset \mathbb{R}$, and furthermore

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\sum_{n=1}^{\infty} \int_{a}^{b} \frac{\sin (n x)}{n^{2}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

Proof. This follows immediately from the uniform convergence we have just proved.
4. The function is differentiable at every $x \neq 2 k \pi(k \in \mathbb{Z})$, and furthermore at such x,

$$
\begin{equation*}
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{\cos (n x)}{n} . \tag{4}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\left(\frac{\sin (n x)}{n^{2}}\right)^{\prime}=\frac{\cos (n x)}{n} \tag{5}
\end{equation*}
$$

all we need to show is the uniform convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\cos (n x)}{n} \tag{6}
\end{equation*}
$$

First it is clear that the series does not converge for $x=2 k \pi$ for any $k \in \mathbb{Z}$. Thus in the following we focus on $x \neq 2 k \pi$.

To prove the convergence we apply Abel's re-summation trick:

- First we obtain a good formula for

$$
\begin{equation*}
S_{n}(x):=\cos x+\cdots+\cos (n x) . \tag{7}
\end{equation*}
$$

We have

$$
\begin{align*}
S_{n}(x)= & \frac{\sin (x / 2)}{\sin (x / 2)}[\cos x+\cdots+\cos (n x)] \\
= & \frac{1}{\sin (x / 2)}[\sin (x / 2) \cos x+\cdots+\sin (x / 2) \cos (n x)] \\
= & \frac{1}{2 \sin (x / 2)}\left[\left(\sin \left(x+\frac{x}{2}\right)-\sin \left(x-\frac{x}{2}\right)\right)+\cdots+\left(\sin \left(n x+\frac{x}{2}\right)-\right.\right. \\
& \left.\left.\sin \left(n x-\frac{x}{2}\right)\right)\right] \\
= & \frac{\sin (n x+x / 2)}{2 \sin (x / 2)}-1 / 2 \tag{8}
\end{align*}
$$

We see that for any compact interval $[a, b]$ not containing $2 k \pi$, there is $M=M(a, b)$ (that is, depending on a, b - more precisely depending on the distance between a, b and the nearest $2 k \pi$) such that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \forall x \in[a, b], \quad\left|S_{n}(x)\right|<M . \tag{9}
\end{equation*}
$$

- Now we apply the re-summation trick. For any $m>n$, we have

$$
\begin{align*}
\left|\frac{\cos ((n+1) x)}{n+1}+\cdots+\frac{\cos (m x)}{m}\right|= & \left|\frac{S_{n+1}(x)-S_{n}(x)}{n+1}+\cdots+\frac{S_{m}(x)-S_{m-1}(x)}{m}\right| \\
= & \left\lvert\, \frac{S_{m}(x)}{m}-\frac{S_{n}(x)}{n+1}+S_{n+1}(x)\left(\frac{1}{n+1}-\right.\right. \\
& \left.\frac{1}{n+2}\right) \left.+\cdots+S_{m-1}(x)\left(\frac{1}{m-1}-\frac{1}{m}\right) \right\rvert\, \\
\leqslant & \frac{M}{m}+\frac{M}{n+1}+M\left[\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\cdots+\right. \\
& \left.\left(\frac{1}{m-1}-\frac{1}{m}\right)\right] \\
= & \frac{2 M}{n+1} . \tag{10}
\end{align*}
$$

Note that this holds for every $x \in[a, b]$.

- Finally we prove uniform convergence.

Taking $m \rightarrow \infty$ in the above estimate, we have (denote the limit function by $\phi(x)$)

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \forall x \in[a, b], \quad\left|\phi(x)-S_{n}(x)\right| \leqslant \frac{2 M}{n+1} . \tag{11}
\end{equation*}
$$

Now let $\varepsilon>0$ be arbitrary. Take $N>\frac{2 M}{\varepsilon}$. Then for every $n>N$ and every $x \in[a, b]$, we have

$$
\begin{equation*}
\left|\phi(x)-S_{n}(x)\right| \leqslant \frac{2 M}{n+1}<\frac{2 M}{N}<\varepsilon . \tag{12}
\end{equation*}
$$

Thus $S_{n}(x) \longrightarrow \phi(x)$ uniformly on $[a, b]$.
Now take any $x \neq 2 k \pi$. There is $a<x<b$ such that $[a, b]$ does not contain any $2 k \pi$. We see that $\sum_{n=1}^{\infty} \frac{\cos (n x)}{n}$ converges uniformly on $[a, b]$. Consequently $f(x)$ is differentiable on (a, b) and in particular at x.
5. The function is not differentiable at every $x=2 k \pi(k \in \mathbb{Z})$.

Proof. Again thanks to periodicity, all we need to prove is $f^{\prime}(0)$ does not exist. We achieve this through proving

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{f(1 / m)-f(0)}{1 / m}=+\infty . \tag{13}
\end{equation*}
$$

Clearly $f(0)=0$. We have

$$
\begin{aligned}
\frac{f(1 / m)}{1 / m} & =\sum_{n=1}^{\infty} \frac{\sin \left(\frac{n}{m}\right)}{n^{2} / m} \\
& =\sum_{n=1}^{m} \frac{1}{n} \frac{\sin (n / m)}{n / m}+m \sum_{n=m+1}^{\infty} \frac{\sin (n / m)}{n^{2}} .
\end{aligned}
$$

We denote the two sums by A and B.

- Estimate of A.

It is easy to prove that $\frac{\sin x}{x}$ is decreasing on $(0, \pi / 2)$. Thus for each term in A we have

$$
\begin{equation*}
\frac{n}{m} \leqslant 1 \Longrightarrow \frac{\sin (n / m)}{n / m} \geqslant \frac{\sin 1}{1} . \tag{14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A \geqslant c \sum_{n=1}^{m} \frac{1}{n} \tag{15}
\end{equation*}
$$

where $c:=(\sin 1) / 1>0$ is a fixed constant.

- Estimate of B.

We have

$$
\begin{equation*}
|B| \leqslant m \sum_{n=m+1}^{\infty} \frac{1}{n^{2}}<m \sum_{n=m+1}^{\infty} \frac{1}{(n-1) n}=m \sum_{n=m+1}^{\infty}\left[\frac{1}{n-1}-\frac{1}{n}\right]=1 . \tag{16}
\end{equation*}
$$

Putting the estimates together, we have

$$
\begin{equation*}
\frac{f(1 / m)}{1 / m}>c \sum_{n=1}^{m} \frac{1}{n}-1 \tag{17}
\end{equation*}
$$

whose limit is obviously ∞ as $m \rightarrow \infty$.
Thus we have found a sequence $x_{m} \longrightarrow 0$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{f\left(x_{m}\right)-f(0)}{x_{m}-0}=+\infty \tag{18}
\end{equation*}
$$

and it follows that f cannot be differentiable at 0 .
Exercise 1. Prove that $\frac{\sin x}{x}$ is decreasing on $(0, \pi)$.
Remark 1. Riemann proposed ${ }^{11}$ the following function

$$
\begin{equation*}
g(x):=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}} \tag{19}
\end{equation*}
$$

[^0]as a candidate for "everywhere continuous but nowhere differentiable" functions. $g(x)$ may look similar to $f(x)$ but the replacement of $\sin (n x)$ by $\sin \left(n^{2} x\right)$ totally changed the game. The continuity part is as trivial as that for $f(x)$, but the differentiability part is much more difficult. G. H. Hardy in 1916 prove that $g(x)$ is indeed not differentiable at x when $x / \pi \notin \mathbb{Q}$. Joseph L. Gerver ${ }^{2}$ finally proved in $1970 / 1972$ that $g^{\prime}(x)=-\frac{1}{2}$ at all points of the form $\frac{2 r+1}{2 s+1} \pi$ where $r, s \in \mathbb{Z}$, and $g(x)$ is not differentiable at every other rational multiple of π. Thus the differentiability of $g(x)$ is completely understood.

The function $g(x)$ played roles in many mathematical fields, including number theory, fractals, and partial differential equations.

Problem 1. Study the continuity of another function proposed by Riemann in his Habilitationsschrift:

$$
\begin{equation*}
h(x):=\sum_{n=1}^{\infty} \frac{u(n x)}{n^{2}} \tag{20}
\end{equation*}
$$

where $u(t)$ satisfies:

1. $u(t)$ is periodic with period 1 , that is $u(t+1)=u(t)$ for all $t \in \mathbb{R}$.
2. $u\left(\frac{1}{2}\right)=0$.
3. $u(t)=t$ for $t \in[0,1 / 2)$ and $u(t)=t-1$ for $t \in(1 / 2,1)$.

Exercise 2. Plot the partial sums of all the above pathological functions: $f(x), g(x), h(x)$, together with

- The function proposed by Weierstrass:

$$
\begin{equation*}
w(x):=\sum_{n=1}^{\infty} a^{n} \cos \left(b^{n} \pi x\right) \tag{21}
\end{equation*}
$$

where $0<a<1, b$ an odd integer, $a b>1 .{ }^{3}$

- The function proposed by van der Waerden: See $\S 4.2$ of this week (Week 2)'s notes.
for different n 's (for example $n=5,10,20,50,100$, etc.).

2. Now at Rutgers University: http://math.camden.rutgers.edu/faculty/.
3. Weierstrass originally required $a b>1+\frac{3 \pi}{2}$. Hardy in 1916 relaxed it to $a b>1$. You should try different a, b and see what happens.

[^0]: 1. There is no official record, but Weierstrass stated in a 1875 letter that he "knew" Riemann had constructed this function as early as 1861 .
