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1. Lebesgue Outer Measure

Notation. In this and the following sections, we use �; �in; �out to denote Jordan measure, Jordan
inner measure, Jordan outer measure; And use m; m�; m

� to denote Lebesgue measure, Lebesgue
inner measuer, Lebesgue outer measure.

1.1. Lebesgue outer measure

The inspiration comes from the following idea proposed by Èmile Borel: Let (ai; bi); i=1;2;3; ::: be
disjoint �nite open intervals. Let A :=[i=11 (ai; bi). Then its measure should be

X
i=1

1

(bi¡ ai): (1)

Exercise 1. Prove that this in�nite sum always exists (may be in�nity). 2

Definition 1. Let A�R. Then we de�ne its Lebesgue outer measure through

m�(A) := inf

"X
i=1

1
(bi¡ ai)

#
(2)

where the in�mum is taken over all countable sequences of open intervals f(ai; bi)g such that

A�[i=11 (ai; bi); (3)

that is over all countable coverings of A by open intervals.

Exercise 2. Show that the (ai; bi)'s can be taken disjoint in De�nition 1. (Hint:3 )

Exercise 3. Show that the �open intervals� in De�nition 1 can be replaced by �closed intervals�, �half-open, half-
closed intervals�, or simply �intervals�.

Exercise 4. Show that the requirement that the covering is countable can be dropped. (Hint: 4 )

Remark 2. Note that we cannot drop both �countable� and �open�, since otherwise we have
A�[a2A[a; a] for any set A, and clearly

P
a2A ja¡aj=

P
a2A 0=0 in any reasonable de�nition.

Remark 3. Just like Jordan outer measure, Lebesgue outer measure is de�ned for every set.

Exercise 5. Why is it de�ned for every set? (Hint:5 )

Exercise 6. Let �out denote the Jordan outer measure. Prove that for every A�R,

m�(A)6 �out(A): (4)

2. The RHS is a positive series so either converges to a �nite value or to +1.

3. Any open set in R can be written as a countable union of disjoint open intervals.

4. Prove that any covering of a set A by open intervals A � [I2WI has a countable sub-covering. To see this, let
An :=A\ [[I2Wn

I], whereWn :=fI 2W j jI j>1/ng. Prove that the covering An�[I2Wn
I has a countable sub-covering through

considering rational points.

5. Because R has the least upper bound property which guarantees the existence of in�mum.
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We see that the only di�erence between Jordan outer measure and Lebesgue outer measure
is that, the latter allows countably many intervals in the covering.

This idea, that is replacing �nite covering in the de�nition of Jordan outer measure by
countable covering, though feels very natural to us today, was not so when it was �rst proposed
by Borel. The concern was that it immediately leads to the conclusion that the set of rational
numbers has zero outer measure and is thus �negligible�. This was anything but natural to most
mathematicians in the late 19th century due to the fact that rational numbers are dense. See
(Hawkins book) for a detailed account of the historical origin and development of Lebesgue's
theory.

From �nite to countable

Example 4. Let A :=[i=11 (ai; bi) where (ai; bi) are disjoint from each other. Then

m�(A) :=
X
i=1

1

(bi¡ ai) (5)

Proof. Clearly A�[i=11 (ai; bi) therefore m�(A)6
P

i=1
1 (bi¡ ai).

For the other direction, let

A�[i=11 (ci; di) (6)

where (ci; di) may or may not be disjoint.

Let �>0 be arbitrary. Take any n2N and de�ne An :=[i=1n
�
ai+

"

2n
; bi¡ "

2n

�
([a; b]=? if b<a).

Then we have An compact and

An�[i=11 (ci; di): (7)

Consequently we have a �nite subcover, say

An�[i=1k (ci; di): (8)

Both sides are Jordan measurable. Thus we easily see that

X
i=1

n

(bi¡ ai)¡ "6 �(An)6 �
¡
[i=1k (ci; di)

�
6
X
i=1

k

(di¡ ci)6
X
i=1

1

(di¡ ci): (9)

As n is arbitrary, this gives X
i=1

1

(bi¡ ai)¡ "6
X
i=1

1

(di¡ ci): (10)

This in turn gives X
i=1

1

(bi¡ ai)6
X
i=1

1

(di¡ ci) (11)

thanks to the arbitrariness of "> 0.
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Taking in�mum over all f(ci; di)g we reach
P

i=1
1 (bi¡ ai)6m�(A). �

Exercise 7. Prove that m�([0; 1])= 1. (Hint:6 )

Exercise 8. Prove that m�(A)= 0 for any �nite set A.

Proposition 5. The Lebesgue outer measure has the following properties.

a) A�B=)m�(A)6m�(B);

b) Let A1; A2; :::�R be a countable sequence of sets. Then

m�([n=11 An)6
X
n=1

1

m�(An): (12)

Proof. The proof for a) is left as exercise. For b), let "> 0 be arbitrary. Let An�[k=11 (an;k; bn;k)
such that X

k=1

1
(bn;k¡ an;k)6m�(An)+

"
2n
: (13)

Then we have

[An�[n;k=11 (an;k; bn;k) (14)

which is still a countable convering and furthermore

X
n;k=1

1
(bn;k¡ an;k)=

X
n=1

1 "X
k=1

1
(bn;k¡ an;k)

#
6 "+

X
n=1

1
m�(An): (15)

The conclusion now follows from the arbitrariness of ". �

Remark 6. Naturally7 one would like to construct fAng such that the inequality in (12) becomes
strict. However any attempt to explicitly construct such sets is doomed to fail due to the fact that
their construction is only possible if we accept Axiom of Choice. More on this later when we discuss
measurability.

Exercise 9. Prove (15). (Hint:8 )

Exercise 10. Let A1;A2; ::: be a sequence of disjoint compact sets. Then m�([n=11 An)=
P

n=1

1
m�(An).(Hint:9 )

Exercise 11. Let A=[i=11 [ai; bi] where (ai; bi) are disjoint � note that ai= bj could happen. Prove that

m�(A)=
X
i=1

1

(bi¡ ai): (16)

6. Let [0; 1]�[i=11 (ai; bi). Since [0; 1] is compact, there is a �nite sb-covering.

7. If this thought didn't pop up when you are reading this, please slow down to allow yourself some thinking time.

8. The convergence of non-negative series is not a�ected by re-arrangement.

9. Prove that for any N 2N,
P

n=1
N m�(An)6m�([An). To see this, consider an open covering [(ai; bi) of [An. Then

there is a �nite subcovering of [n=1N An. Now construct appropriate coverings based on these (ai; bi) � break up some (ai; bi)
into two or more intervals if necessary � of each An.
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(Hint:10 )

1.2. Zero measure sets

1.2.1. De�nition and properties

Definition 7. (Zero measure set) A�R is said to have zero Lebesgue measure if and only if
m�(A)= 0.11 In other words if and only if the following holds:

Given any ">0, there is a countable sequence of open intervals f(ai; bi)g such that A�[i=11 (ai;
bi) and

P
i=1
1 (bi¡ ai)<".

Proposition 8. Let A�R be countable. Then m(A)= 0.

Proof. This follows directly from Proposition 5. But a direct proof is also easy.

As A is countable, it can be listed A= fa1; a2; :::g. Now for any "> 0, we have

A�[i=11
�
ai¡

"

2i+2
; ai+

"

2i+2

�
: (17)

Note that X
i=1

1 h�
ai+

"

2i+2

�
¡
�
ai¡

"

2i+2

�i
=
X
i=1

1
"

2i+1
=
"
2
<": (18)

Thus m(A)= 0 by de�nition. �

Exercise 12. Prove that [0; 1] is uncountable. (Hint:12 )

Remark 9. Note that m(A)= 0 does not imply that A is countable, as the Cantor set shows.

Theorem 10. Let An; n2N be such that m(An)= 0 for all n. Then m([An)= 0.

Proof. Exercise. (Hint:13 ) �

Let P (x) be a statement regarding real numbers. If there is A�R such that P (x) is true for
all x 2R¡ A, we say P (x) holds �almost everywhere�, denoted �P (x) a:e:�. For example, let

f(x)=

�
0 x2R¡Q
1 x2Q

, then f(x)= 0 a:e:.

Almost everywhere

10. Note that A�[(ai; bi).

11. Also denoted m(A) = 0 since any such set is in fact Lebesgue measurable.

12. If it is countable then it should have zero outer measure.

13. For An, �nd a covering of open intervals whose length add up to less than "

2n+1
. Or apply Proposition 5.
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Exercise 13. Show that the Cantor function (devil's staircase) � check wiki if you don't know what it is � is
constant (and thus di�erentiable with derivative 0) almost everywhere.

1.2.2. Lebesgue's theorem on Riemann integrability

Lemma 11. Let A�R be compact. Then �out(A)=m�(A).

Proof. All we need to prove is �out(A)6m�(A). Let ">0 be arbitrary. Take any countable covering
[(ai; bi)�A such that

P
i=1
1 (bi¡ai)6m�(A)+". Then there is a �nite subcovering (aik; bik), k=1;

2; :::; K. Now we have

�out(A)6
X
k=1

K

(bik¡ aik)6
X
i=1

1

(bi¡ ai)6m�(A)+ ": (19)

The conclusion now follows from the arbitrariness of ". �

Exercise 14. Find a compact set A� [0; 1] that is not Jordan measurable. (Hint:14 )

Theorem 12. (Lebesgue) Let f : [a; b] 7!R be bounded. Let A := fx2 [a; b]j f is not continuous at
xg. Then f is Riemann integrable on [a; b] if and only if m�(A)= 0. In other words, f is Riemann
integrable on [a; b] if and only if f is continuous almost everywhere.

Proof. As the bulk of the proof is in fact several exercises of Math 217, we only sketch the new
ideas here.

The key is the following �oscillation function�, originally proposed by Riemann.

!f(x) := lim
�!0+

�
sup

jy¡xj<�
f(y)¡ inf

jy¡xj<�
f(y)

�
: (20)

It can be shown that f is Riemann integrable if and only if for every "> 0,

�out(fx2 [a; b]j!f(x)>"g)= 0: (21)

Since �out > m�, we have m�f!f(x) > "g = 0 and m�(A) = 0 follows from Proposition 5 and
A=[n2Nfxj!f(x)> 1/ng.

For the other direction, the key is the prove that for every " > 0, the set fx2 [a; b]j !f(x)> "g
is bounded and closed, and is thus compact thanks to Heine-Borel. �

Remark 13. Recall that a set A is Jordan measurable if and only if �out(@A) = 0. By Theorem
12 we see that A is Jordan measurable if and only if m�(@A)=0. Thanks to Lemma 11, there is no
inconsistency here, as the boundary set @A is always compact.

14. Construct B � [0; 1] open and not Jordan measurable through �fattening� the rationals. Then take A= [0; 1]¡B.
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2. Lebesgue Measure on [0; 1]

For simplicity of presentation we restrict our consideration in this section to subsets of [0; 1]. Only
a small part of the proofs needs to be changed � be warned: there are indeed things that need to
be changed! � when considering the general case.

From now on, we will denote Ac := [0; 1]¡A.

2.1. Lebesgue measurability

Definition 14. (Inner Measure) Let A� [0; 1]. We de�ne its Lebesgue inner measure through

m�(A) := 1¡m�(Ac): (22)

Exercise 15. Let A� [0; 1]. Then �in(A)6m�(A).

Proposition 15. Let A� [0; 1]. Then m�(A)6m�(A).

Proof. We have

m�(A)+m�(Ac)>m�(A[Ac)=m�([0; 1])= 1: (23)

The conclusion follows. �

Definition 16. (Measurable sets) A � [0; 1] is Lebesgue measurable if and only if m�(A) =
m�(A) (that ism�(A)+m�(Ac)=1). The common value is called the Lebesgue measure of A, denoted
m(A).

From now on, �measurable� means Lebesgue measurable.

Exercise 16. Prove: A� [0; 1] is measurable if and only if m�(A)+m�(Ac)6 1.

Theorem 17. If A � [0; 1] is Jordan measurable then it is measurable. In this case furthermore
�(A)=m(A).

Proof. Exercise. (Hint:15 ) �

Exercise 17. Prove: A� [0;1] is Jordan measurable if and only if �out(A)+ �out(A
c)= �out([0;1])=1. (Hint:16 )

Proposition 18. Let A� [0; 1] be such that m�(A)= 0. Then A is measurable, and m(A)= 0.

Proof. All we need to prove is m�(Ac)= 1. We have on one hand m�(Ac)6m�([0; 1])= 1 while on
the other m�(Ac)>m�([0; 1])¡m�(A)= 1. Therefore m�([0; 1]¡A)= 1. �

Exercise 18. Prove that open, closed, half-open/half-closed intervals are all measurable.

15. �in6m�6m�6�out.

16. Take any simple graph B � Ac. Then Bc := [0; 1] ¡ B is measurable and furthermore [0; 1] ¡ B � A which implies
�in(A)= �in(B

c)= �(Bc)= �([0; 1])¡ �(B)= 1¡ �(B). This gives �in(A)>1¡ �out(A
c)= �out(A).
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It turns out that m�(A) +m�(Ac) = 1, that is m�(A \ [0; 1]) +m�(Ac \ [0; 1]) =m�([0; 1]), is
equivalent to the following condition which looks like a much stronger condition.

Theorem 19. (Caratheodory's criterion) A� [0; 1] is Lebesgue measurable if and only if for
every E � [0; 1], measurable or not, there holds

m�(E)=m�(A\E)+m�(Ac\E): (24)

Proof. See �4.1. �

Remark 20. When we need to prove the measurability of a set, we only need to check De�nition
16; But once we know a set is measurable, we can immediately employ the power of (24).

Instead of proving the theorem, we provide some explanation and rough idea here.

� At the level of intuition, we note that, just like Jordan measurability, (Lebesgue) measur-
ability of a set A can also be understood as a requirement that @A is �not too irregular�.
Thus if m�(A\ [0; 1]) +m�(Ac\ [0; 1]) =m�([0; 1]), then the whole @A must be �not too
irregular�. On the other hand, when we consider m�(A \E) +m�(Ac \E), only part of
@A is involved here, so the mess it creates is just part of that created by the whole @A.
As the latter is negligible, the former must also be.

� The strategy of proof would be as follows.

� Prove (24) when E is an open interval;

� Prove (24) when E is a �nite union of disjoint open intervals;

� Prove (24) for general E using the fact that the outer measure of any set is de�ned
through approximation by open sets.

Are you surprised?

2.2. Properties of Lebesgue measure

Theorem 21. The following hold.

a) A is measurable () Ac is measurable;

b) A; B are measurable then so are A \ B; A [ B; If furthermore A; B are disjoint, then
m(A[B)=m(A)+m(B).

c) A1; A2; ::: are measurable and disjoint. Then [n=11 An is measurable and furthermore

m([n=11 An)=
X
n=1

1

m(An): (25)

Proof.

a) Exercise. (Hint:17 )

17. (Ac)c=A.
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b) As A[B=(Ac\Bc)c, it su�ces to prove the measurability of A\B for any measurable A;
B. We apply Theorem 19:

m�(A\B)+m�(Ac\B)=m�(B); (26)

m�(A\Bc)+m�(Ac\Bc)=m�(Bc): (27)

Now adding the two equalities up, we have

m�(A\B)+m�(Ac\B)+m�(A\Bc)+m�(Ac\Bc)= 1: (28)

But

(Ac\B)[ (Ac\Bc)[ (A\Bc)= (A\B)c (29)

which gives, thanks to Proposition 5,

m�(Ac\B)+m�(A\Bc)+m�(Ac\Bc)>m�((A\B)c): (30)

Thus we have

m�(A\B)+m�((A\B)c)6 1: (31)

Applying Proposition 5 one more time we obtain m�(A \ B) + m�((A \ B)c) = 1 and
measurability follows.

Now assume A \ B = ?. In this case (28) becomes (note that the � vanishes due to
measurability of all sets involved)

m(B)+m(A)+m(Ac\Bc)= 1: (32)

But as Ac\Bc=(A[B)c is measurable, we have

1¡m(Ac\Bc)=m(A[B) (33)

and the conclusion follows.

c) Denote A :=[n=11 An. Then we have

Ac� (A1[ ��� [AN)
c=)m�(Ac)6m�((A1[ ��� [AN)

c)=m((A1[ ��� [AN)
c): (34)

Thus

m�(Ac)6 1¡
X
n=1

N

m(An) (35)

for any N 2N. This leads to

m�(Ac)6 1¡
X
n=1

1

m(An)6 1¡m�(A)6m�(Ac): (36)

Thus all the relations must be �=� and both measurability and m(A) =
P

n=1
1 m(An)

follow. �

Exercise 19. Let A; B be measurable. Prove that A¡B is measurable. (Hint:18 )

18. A¡B=A\Bc.
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Exercise 20. Let A1; A2; ::: be measurable. Prove that [n=11 An is also measurable. Note that the An's may not
be disjoint. (Hint:19 )

Exercise 21. Let A1; A2; :::: be measurable. Prove that \n=11 An is also measurable. (Hint:20 )

Exercise 22. Prove that there doesn't exist a sequence of disjoint Jordan measurable sets A1; A2; ::: such that
[n=11 An is also Jordan measurable but �([n=11 An)=/

P
n=1

1
�(An). (Hint:21 )

Exercise 23. Prove that there doesn't exist a sequence of non-negative functions un(x) such that each un(x) is
Riemann integrable on [a; b] and f(x)=

P
n=1

1
un(x) is also Riemann integrable on [a; b], butZ

a

b

f(x) dx=/
X
n=1

1 Z
a

b

un(x) dx: (37)

(Hint:22 )

Proposition 22. Open sets are measurable; Closed sets are measurable.

Proof. Exercise. (Hint:23 ) �

2.3. Non-measurable sets

Proposition 23. (Guiseppe Vitali, 1905) There is A� [0; 1) that is not measurable.

Proof. We divide [0; 1) into a countable union of disjoint sets as follows.
First divide [0;1) into disjoint equivalence classes: x; y are equivalent, denoted x� y, if and only

if x¡ y 2Q. Now by Axiom of Choice, there is a subset A� [0; 1) such that its intersection with
each equivalence class consists of exactly one number.

Now denote Q\ (0; 1) by fr1; r2; :::g. De�ne the set

Ai := fa+ ri mod 1j a2Ag: (38)

Denote A0 :=A.
We claim i) [0; 1)=[i=01 Ai; ii) i=/ j=)Ai\Aj=?.

� Proof of i). Assume the contrary, that is there is x 2 [0; 1) such that x2/ Ai for every i. By
de�nitio of A there is y�x such that y2A. But then y¡x2Q which means x= y+ ri mod
1 for some i which means x2Ai. Contradiction.

� Proof of ii). Assume the contrary, there are i; j such that Ai\Aj=/ ?. Take x2Ai\Aj. By
de�nition there are y; z 2A such that

x= y+ ri= z+ rj mod 1 (39)

which gives

y¡ z 2Q: (40)

This contradicts the de�nition of A.

19. Set B1=A1; B2=A2¡A1; B3=A3¡ (A1[A2); and so on.

20. \n=11 An= [[n=11 An
c ]c.

21. Jordan measurable =) measurable.

22.
R
a

b
un(x) dx= �(f(x; y)j x2 [a; b]; 06 y <un(x)g).

23. Any open set is the union of countably many open intervals.
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Now assume A is measurable. Then we have on one hand

8i m(A)=m(Ai) (41)

while on the other X
i=0

1

m(Ai)=m([i=01 Ai)=m([0; 1))= 1: (42)

It then follows m(Ai)= 0 for all i. But then
P

i=0
1 m(Ai)= 0. Contradiction. �

Exercise 24. Prove that A is measurable =) every Ai is measurable and furthermore m(Ai)=m(A) for every i.

Exercise 25. The proof can be simpli�ed a bit: De�ne Ai := A + ri for every ri 2 Q \ [¡1; 1]. Prove that
[0; 1]�[i=11 Ai� [¡1; 2] and obtain contradiction.

Remark 24. In 1970, Robert M. Solovay (1938 � )24 proved that if we replace Axiom of Choice
by Axiom of Dependent Choice25 and assume the existence of certain large cardinal26, then the
statement �Every A�R is measurable� is consistent with the Zermelo-Fraenkel set theory. Thus we
see that there is no hope giving an explicit construction � even a inductive one � of a set A that is
not measurable. See (Ciesielski) for further discussions on this topic.

In particular, regarding (12), we see that if all of Ai's are measurable, then necessarily [Ai is
also measurable and m�([Ai) =

P
m�(Ai) must hold. For the inequality to be strict, at least one

of the Ai's must be non-measurable.

Exercise 26. Let A� [0; 1] be a non-measurable set. Then

m�(A)+m�(Ac)>m�(A[Ac)=m�[0; 1]= 1: (43)

(Hint:27 )

Exercise 27. Is it possible to �nd a sequence of disjoint sets fAng such that m�([n=11 An)<
P

n=1

1 m�(An) but
for every N 2N we have m�([n=1N An)=

P
n=1

N
m�(An)? (Hint:28 )

Remark 25. (The Measure Problem) It is clear that Vitali's construction forbids any countably
additive and translation-invariant measure to have the whole P(R) as its measurable sets.

The �Measure Problem� asks the following question: What if we drop the requirement of trans-
lation invariance? Does there now exist a measure that can measure all subsets of R?

It turns out that, if such a measure exists, then the cardinality of R must be extremely large:
c>@n for any n2N.

Stanislav Ulam (1919 � 1984) proved in 1930 that if the answer is negative, then there is a
uncountable cardinal � such that there exists a nontrivial f0; 1g valued �-additive measure. Such
a � is called �measurable�. Existence of measurable cardinals cannot be proved or disproved in ZFC.

24. A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math., 92 (1970), 1 � 56.

25. Which enables us to de�ne in�nitely many objects inductively, such as �take x1, then take x2, and so on ...�

26. In 1984 Saharon Shelah (1945 � ) showed (Can you take Solovay's inaccessible away?, Israel J. Math. 48(1), 1984)
that this assumption cannot be dropped, in the sense that ZF+ Axiom of Dependent Choice + All sets are measurable implies
ZF + existence of such large cardinals.

27. De�nition of measurability.

28. If m�
¡
[n=1N An

�
=
P

n=1
N m�(An), then necessarily m�([n=11 An)>

P
n=1
1 m�(An).
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3. Structure of Measurable Sets

Notation. �measurable� means �Lebesgue measurable� in this section.

3.1. G� and F�

Now we try to get some concrete idea of what measurable sets look like. First recall that for Jordan
measurable sets we have the following result on their structures:

Theorem 26. A set A � [0; 1] is Jordan measurable, then A=B [ C where B is open and C has
Jordan measure 0; Also A=D¡E where D is closed and E has Jordan measure 0.

Proof. Exercise. (Hint:29 ) �

Thus a Jordanmeasurable set is almost open or closed. For measurable sets we have the following
understanding:

A� [0; 1] is measurable if and only if A is almost the result of countably many set
operations (intersection, union, complement) on open (or closed) sets.

Definition 27. (G� and F� sets) A set is called G� if it is the intersection of countably many
open sets; A set is called F� if it is the union of countably many closed sets.

Exercise 28. Prove that every closed set is G� and every open set is F�. (Hint:30 )

Exercise 29. Prove that A is G� if and only if Ac is F�.

Exercise 30. Here � comes from the German word �Durchschnitt�, meaning intersection; � comes from the
French word �somme�, meaning sum.

Now explain: Why don't we consider G� and F� sets? (Hint:31 )

Exercise 31. Explain why we didn't encounter G� and F� sets when discussing Jordan measure. (Hint: 32 ).

Proposition 28. G� and F� sets are measurable.

Proof. Exercise. (Hint:33 ) �

Theorem 29. Let A� [0;1] be measurable. Then there are a G� set B�A and a F� set C �A such
that m�(B ¡A)=m�(A¡C)= 0.

Proof. By de�nition of outer measure there is a countable sequence of open sets Bn � A such
that m�(Bn)&m�(A). Take B = \n=11 Bn � A. Then m�(B) 6m�(A) =)m�(B) =m�(A). Since
A is measurable, m�(A) +m�(B ¡ A) =m�(A \ B) +m�(Ac \ B) =m�(B) =m�(A) which gives
m�(B ¡A)= 0. The proof of the other half is left as exercise. �

29. A=Ao[ (A¡Ao). Note that A¡Ao� @A.
30. Let A be closed. Set An := fxjdist(x; A)< 1/ng.
31. Union of open sets is open; Intersection of closed sets is closed.

32. Finite intersection of open sets is still open.

33. Theorem 21.
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Remark 30. From the above proof we see that for any set A, not necessarily measurable, there are
G� and F� sets B �A;C �A such that m�(B) =m�(A); m�(C)=m�(A). However only when A is
measurable can we conclude from this that m�(B ¡A)=m�(A¡C)= 0.

3.2. Borel sets

3.2.1. Borel sets

Exercise 32. Let f :R 7!R. Prove that the set of points where f is continuous is G�. (Hint:34 )

Borel sets are generalizations of G� and F� sets. Put it simply, Borel sets are the results of
application of countably many times union, intersection, complement on open sets or closed sets.

Definition 31. (�-algebra) A �-algebra on [0; 1] is a subset X of P([0; 1]) satisfying:

i. A2X =)Ac2X;

ii. A1; A2; :::2X =)[n=11 An;\n=11 An2X.

Exercise 33. Show that we can drop either [n=11 An or \n=11 An in the de�nition. (Hint:35 )

Definition 32. (Borel set) The set of Borel sets, B, is the smallest �-algebra on [0;1] containing
all open sets.

Theorem 33. B exists.

Proof. Clearly P([0; 1]) is a �-algebra, that is the set W of all �-algebras on [0; 1] is not empty.
Now take

B :=\X2WX : (44)

We can prove straightforwardly that B is also a �-algebra. �

Exercise 34. Prove that B is the smallest �-algebra containing all open intervals.

Exercise 35. Prove that B is the smallest �-algebra containing all closed sets.

Taking the subscript � to mean the operation of taking countable union and � to mean the
operation of taking countable intersection, we can form two sequences:

F�; F��; F���; ::::;G�; G��; G���; :::: (45)

Exercise 36. Let ffng be a sequence of continuous functions. Let C := fx2Rj fn(x) convergesg. Prove that C
is F��. (Hint:36 )

3.2.2. Borel hierarchy

We can construct B as follows.

Definition 34. We de�ne

F0 := fclosed setsg; F1 :=F�; F2 :=F��; :::: (46)

34. Intersection of !(f)< 1/n.

35. \An=([Anc )c.
36. Following Cauchy criterion, C =\n=11 [[m=1

1 [\k=m1 fxj jfk(x)¡ fm(x)j61/ng]].

14 Math 317 Week 12: Lebesgue Measure: A Brief Introduction



iteratively so that for any ordinal number �, if it is even37 then

F� := f\n=11 AnjAn2F�n; �n<�g; (47)

If � is odd, then

F� := f[n=11 AnjAn2F�n; �n<�g: (48)

We can similarly de�ne G0; G1; :::.

Theorem 35. B=[�<!1F�=[�<!1G�. Here !1 is the �rst uncountable ordinal.

Exercise 37. Prove that

!1= f�j� is a countable ordinalg: (49)

Alternatively, we can de�ne the hierarchy as follows.

Definition 36. (Borel hierarchy) We de�ne ��
0 ;��

0 ;��
0 iteratively for all ordinal numbers �

as follows.

� �1
0 := fopen setsg;

� ��
0 := fAcjA2��0 g;

� ��
0 := fAjA=[n=11 An; An2��n

0 with �n<�g;

� ��
0 := ��

0 \��
0 .

Exercise 38. Prove that

F�=�2
0; G�=�2

0: (50)

Theorem 37. B=[�<!1��0 =[�<!1��
0 =[�<!1��

0 .

3.2.3. Measurability of Borel sets

Theorem 38. Borel sets are measurable.

Proof. Exercise. (Hint:38 ) �

Theorem 39. The cardinality of B is c, that is B�R.

Proof. We can prove that for each �xed � < !1, ��0 � R. On the other hand we know that the
cardinality of !1 is @16 2@0= c. Therefore the cardinality of B is no more than @1 � c= c. On the
other hand clearly B&R. The conclusion now follows from Schroeder-Bernstein. �

Corollary 40. There are measurable but non-Borel sets.

Proof. Because the Cantor set C has zero Jordan measure and therefore has zero measure. Thus
all of its subsets are measurable. Therefore

fMeasurabe setsg&P(C)�P(R)>R�B: (51)

Therefore fMeasurable setsg¡B=/ ?. �

37. If � is a limit ordinal, treat it as odd.

38. Use De�nition 34 or 36.
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Remark 41. In constrast to non-measurable sets, the explicit construction of Borel but measurable
sets is di�cult but not impossible. The following is given by Nikolai Nikolaevich Luzin (1883 - 1950)
in 1927:

A=

(
x2Qcjx= a0+

1

a1+
1

a2+ ���

; a02Z; an2N; n> 1
)

(52)

such that there is a subsequence nk satisfying

an1j an2j an3j ��� (53)

Here aj b means a is a factor of b (as in elementary number theory).

Remark 42. In 1905, Lebesgue claimed in a paper to have proved the existence of measurable non-
Borel sets. Later in 1915 the article was assigned to Mikhail Yakovlevich Suslin (1894 - 1919)39 by N.
N. Luzin. Suslin soon discovered that Lebesgue had made a mistake. In particular, Lebesgue thought
that the image of Borel sets through a continuous function � called �analytic� later by Luzin � is
still Borel. In 1917, Luzin proved that analytic sets are measurable. The A in Remark 41 is analytic.

Remark 43. The complements for analytic sets are called co-analytic sets.

Exercise 39. Given that analytic sets are measurable, prove that co-analytic sets are also measurable.

Now naturally one would ask, what about sets of the form f(A) where f is continuous and A
is co-analytic? Are they all measurable?

Exercise 40. Why didn't anybody study the measurability of f(A) where f is continuous and A is analytic?
(Hint:40 )

Surprisingly the answer is that this is undecidable in ZFC. More speci�cally, the answer is
negative in L, the �Goedel Universe�, while positive in a di�erent model of ZFC.

In 1969 Solovay proved that if one assumes the existence of measurable cardinals (See Remark
25), then the answer is positive.

Remark 44. There is a surprising relation between analytic sets (see Remark 42) and summability
of in�nite series (see Week 11's notes).

Let
P

n=1
1 an be an in�nite series. Its Riemann convergence set R(

P
n=1
1 an) is de�ned to be the

set of all sums of convergent re-arrangements of the series. We have seen in Week 1 that R(
P

n=1
1 an)

is either empty (for example when limn!1an= 0 does not hold), or a single number (when
P

an
is absolutely convergent), or the whole R. In other words, we have

[All Pn=1
1 anR

 X
n=1

1
an

!
= f?g[ ffsgj s2Rg[R: (54)

Now consider any summation method C. We can de�ne

R

 
C;
X
n=1

1

an

!
:= fs2RjThere is a rearrangement summable to s with method Cg: (55)

39. He had health problems and Russia had food problems. Mathematics was only the �rst stage of Suslin's grand life
plan. It was to be followed by research in physics, chemistry, biology, and �nally medicine. See http://www-groups.dcs.st-
and.ac.uk/~history/Biographies/Suslin.html.

40. f ; g continuous =) f � g continuous.
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It is proved in 195841 that when we consider all possible summationmethods, then the corresponding
R(C;

P
n=1
1 an) coincide with the analytics sets of R, that is

[All summation methods

"
[All Pn=1

1 anR

 
C;
X
n=1

1

an

!#
= fA�RjA is analyticg: (56)

Exercise 41. Prove that if an! 0 does not hold, then R(
P

n=1

1
an) =?, that is no matter how we re-arrange

the series, the resulting series is not convergent. (Hint:42 )

Exercise 42. Find an in�nite series
P

n=1

1
an such that limn!1an=0 but R(

P
n=1

1
an)=?. (Hint:43 )

3.3. Littlewood's three principles

In his 1944 Lectures on the Theory of Functions, John Edensor Littlewood stated the fol-
lowing �three principles of real analysis�.

i. Every measurable set is nearly a �nite sum of intervals;

ii. Every measurable function is nearly continuous;

iii. Every convergent sequence of measurable functions is nearly uniformly convergent.

Here �nearly� means the claim holds except on a set of (arbitrarily) small Lebesgue measure. These
three principles make it easy to understand some important results in real analysis. For example
Lebesgue's Dominated Convergence Theorem, which roughly says, if fn¡! f and there is g > 0
integrable, such that jfnj6 g, then

lim
n!1

Z
a

b

fn(x) dx=

Z
a

b

f(x) dx: (57)

To see why this should be true, we apply Principle iii: fn! f uniformly except on a set E whose
measure is as small as we want. But on this set we have����Z

E
fn(x) dx

����6 ����Z
E
g(x) dx

���� (58)

which can be made arbitrarily small.

Littlewood's Three Principles of Real Analysis.

Remark 45. In Principles ii and iii we restrict ourselves to �measurable functions�. The reason
is that we need to guarantee that all the sets involved, in particular those of the form fx 2 Rj
a< (6)f(x)< (6)bg, are measurable.

41. Lorentz, G. G. and Zeller, K., Series rearrangements and analytic sets, Acta Math., 100 (1958), pp. 149 � 169.

42. Prove that no matter how we re-arrange, ank! 0 still fails.

43.
P

1/n.
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4. Advanced Topics, Notes, and Comments

4.1. Proof of Theorem 19.

Proof. �If� is obvious as we can simply take E=[0;1]. In the following we prove the �only if� part.

We will prove that, if A� [0; 1] satis�es m�(A)+m�(Ac)= 1, then it satis�es

m�(A\E)+m�(Ac\E)=m�(E) (59)

for every E � [0; 1].

From now we we assume A satis�es m�(A)+m�(Ac)= 1.

� (59) holds when E=(a; b) is an open interval.

All we need to show is m�(A\ (a; b))+m�(Ac\ (a; b))6 b¡a. Let ">0 be arbitrary. We
take disjoint open intervals (c1i; d1i); (c2i; d2i) such that

A�[i=11 (c1i; d1i); Ac�[i=11 (c2i; d2i) (60)

and furthermore m�(A)6P (d1i¡ c1i)6m�(A) + ", m�(Ac)6P (d2i ¡ c2i)6m�(Ac) + ".
Now as

P
(d1i¡ c1i) and

P
(d2i¡ c2i) are convergent, there is N 2N such that

X
i>N

(d1i¡ c1i);
X
i>N

(d2i¡ c2i)<": (61)

Further as [0; 1]=A[Ac�[i=11 [(c1i; d1i)[ (c2i; d2i)], there is a �nite subcovering. Thus we
can take N such that not only (61) holds, but also [0; 1]�[i=1N [(c1i; d1i)[ (c2i; d2i)].

Denote BN :=[i=1N (c1i; d1i);CN :=[i=1N (c2i; d2i). Then we have

m�(A¡BN);m
�(Ac¡CN)<" and m�(BN \CN)= �(BN \CN)< 2 " (62)

where the last relation comes from

�(BN \CN)+ �(BN [CN)= �(BN)+ �(CN)6m�(A)+m�(Ac)+ 2 ": (63)
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Now we have

m�(A\E)+m�(Ac\E) 6 m�(BN \E)+m�(A¡BN)

+m�(CN \E)+m�(Ac¡CN)
6 m�(BN \E)+m�([CN ¡BN ]\E)+m�(CN \BN)+ 2 "

6 b¡ a+4 ": (64)

Here m�(BN \E)+m�([CN ¡BN]\E)=m�(E)= b¡a because all the sets involved consist
of �nitely many disjoint intervals.

As "> 0 is arbitrary, it follows that m�(A\ (a; b))+m�(Ac\ (a; b))6 b¡ a.

� (59) holds when E=[i=1n (ai; bi) where the open intervals are disjoint.

It is a straightforward adaptation of the previous case. Left as exercise.

� (59) holds for every E � [0; 1].

By the same argument as in the �rst case, for every "> 0 there is an open set E" which
is a �nite unions of disjoint open intervals such that

m�(E¡E")<"; m�(E")<m�(E)+ ": (65)

Now we have

m�(A\E)+m�(Ac\E) 6 m�(A\E")+m�(E¡E")

+m�(Ac\E")+m�(E ¡E")

= m�(E")+ 2 "

6 m�(E)+ 3 ": (66)

The conclusion now follows from the arbitrariness of ". �

Remark 46. Note that (65) cannot be replaced by the stronger requirementm�(E4E")<2 " where
the symmetric di�erence E4E" := (E¡E")[ (E"¡E). The problem is that it may not be possible
to makem�(E"¡E) small as E could be non-measurable. More speci�cally, if E"¡E could be made
arbitrarily small also, then following Ec¡E"

c=E"¡E we would have m�(Ec¡E"
c)<" which gives

m�(E)+m�(Ec)6m�(E")+m�(E ¡E")+m�(E"
c)+m�(Ec¡E"

c)< 1+2 ": (67)

The arbitrariness of " then gives m�(E)+m�(Ec)= 1 from which the measurability of E follows.
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5. Exercises and Problems

5.1. Basic exercises
Exercise 43. (Bear) Let T � [0; 1] be any set. Let En; n=1; 2; 3; ::: be measurable. Prove that

m�(T \[n=11 En)=
X
n=1

1

m(T \En): (68)

(Hint:44 )

5.2. More exercises

5.3. Problems
Problem 1. When Riemann was minus three years old, Cauchy proposed the following criterion for �integra-
bility�:

Let f : [a; b] 7!R. Let P = fa=x0<x1< ���<xn= bg be a partition of [a; b]. De�ne the sum:

�(f ; P ) :=
X
i=1

n

f(xi¡1) (xi¡xi¡1): (69)

Say f is integrable if and only if

lim
d(P )¡!0

�(f ; P ) exists and is �nite, (70)

where d(P ) :=maxi2f0;1;:::;n¡1g (xi¡xi¡1).

Prove or disprove: The above integrability is equivalent to Riemann integrability. (Hint: 45 )

Problem 2. Prove or disprove:

A � RN is Jordan measurable if and only if for every E � RN, �out(E) = �out(A \ E) +
�out(A

c\E).

Problem 3. Let A� [0; 1] be such that m�(A)> 0. Prove or disprove: A�R. Also discuss the relation between
this problem and Continuum Hypothesis.

Problem 4. What are the outer and inner measures of Vitali's non-measurable set? Justify.

Problem 5. What is the cardinality of Vitali's non-measurable set? (Hint: 46 )

44. Prove LHS >P1
N m�(T \En) for any N 2N.

45. If f is Riemann integrable obviously it is integrable according to Cauchy's de�nition. On the other hand, wlog let
[a; b]= [0;1]. assume f is not Riemann integrable. Then there is ">0 such that �out(f!f>"g)=� >0. Nowmodify the partition

P =
n
0<

1

n
< ���< n¡ 1

n
< 1
o
to �nd two partitions P1; P2 such that d(Pi)<

2

n
but j�(f ; P1)¡�(f ; P2)j>

" �

2
.

46. @0 � x=2@0. If x6@0 then the LHS 6@0. Therefore x>@0 but then @0 � x= x. Therefore x=2@0= c.
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