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1. Two MOTIVATING EXAMPLES

“... the theory of divergent series is another striking example of the way in which mathematics has
grown. ... when a concept or technique proves to be useful even though the logic of it is confused or
even nonexistent, persistent research will uncover a logical justification,...”

— Morris Kline!

1.1. Euler, 1754.

In 17542, Leonhard Euler studied the following ODE

2?2y +y=z,  y(0)=0. (1)

Solving it by the method of power series?, Euler obtained

o0

y(@)~z— 1) 2?2+ 2N 23— B) 2t + - = Z (=)t (n—1)!a" (2)

n=1
Exercise 1. (IF YOU KNOW SOME ODE) Derive (2).

Exercise 2. What is the radius of convergence for the series in (2)? (Ans:*)

Then he used the following fact.

(n— 1)1 =T(n) :/ 1ot s, 3)
0
Exercise 3. Prove (3).

Substituting (3) into (2), he argued

WK

y(z) ~

o
(—1)"‘133”/ tn—le~tdt
0

1

3
I

OO

a: (—zt)"le tdt

o0
Z "_1 e~tdt
:1

e tdt

Il
||M8

o
N‘T/O T+at’
o
d —t
= T et 4
o 1+xat’ (4)

Exercise 4. Why are ~ used instead of = in some steps above?

1. in Mathematical Thoughts from Ancient to Modern Times, Oxford University Press, 1990. p. 1120 (Vol. 3).
2. Novi Comm. Acad. Sci. Petrop., 5, 1754/5, 205-37, pub. 1760.
3. Note that £ =0 is a irregular singular point for the equation, therefore even the theory of Frobenius does not apply.

4. 0.
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Thus Euler obtained a formula for the solution

y(a;)—/ooo T e—tdt. (5)

14+at

The function defined in (5) turns out to be well-defined and even smooth in (0, c0). The question
now arises: Does y(x) in (5) solve (1)?

Surprisingly it does! We calculate:

>0 x © eTtdt
/ _ v —t —
y(:l:)—/o 8x<1+a:t)e dt /0 (1+xzt)* (6)
On the other hand, integration by parts gives
® e7tdt < get e~tdt
= — 1 — = _— 2 —_—
y(z) ch 52t x[ +A (1+xt)2dt] r—x /(1+xt)2 (7)
Therefore
2y +y=u. (8)

Exercise 5. (IF YOoUu KNOw SOME ODE) Solve (1) to obtain

oo ot
y(x):el/w/ . )
1/x

Note that y(x) is smooth in (0,00). (Hint:® )

Exercise 6. Prove that for every x>0,

=~ x —t _1/z et
_ T etdi= € ar 1
/0 T+at° € /W i (10)

Thus (9) and (5) represent the same function. (Hint:¢ )

1.2. Laguerre, 1879.
In 18797, Edmond Laguerre (1834 - 1886) “solved” the equation®
22y’ +(r—1)y=—1. (11)
Exercise 7. Show that the natural requirement is y(0) = 1.

Using the method of power series, he obtained the solutions as

y(x) ~1+z+ (2!) 22+ (3!) x3+-~:i (n!) 2™ (12)

n=0

5. It is a first order linear equation.
6. Change of variable s=t — 1/z in the RHS integral.

7. Bull. Soc. Math. de France, 7, 1879, 72 - 81.
d?y
dz2’

8. In (KLINE) y’ is mistakenly printed as
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Similar to what Euler did, he concluded using (3) that

which is well-defined, in fact smooth, for all  <0.?
Exercise 8. Prove directly that (13) solves (11).

Exercise 9. Prove that (13) solves (11) through exploring the relation between (13) and (5).

Exercise 10. Show that (13) solves (11) through exploring the relation between (12) and (2). Note that this is
not a proof of (13) solving (11), since for divergent series, the relation

oo N oo
DEIED SRAED Saps i
n=1 n=1 n=N+41
may not hold.
Exercise 11. Consider the following “Stieltjes series”
(=1)"™nlz™. (15)
n=0
a) Show formally that it satisfies
22y +(1+3x) y' +y=0; (16)
b) Show formally that the series sum up to
0o 671& 4
= t; 1
vy = [ S ()

¢) Prove that (17) solves (16). (Hint:10)

\

/What is summability and one of the reasons for studying it.

As we have seen above, formal manipulation of divergent series may yield meaningful “sums”
for such series. The theory of summability provides mathematical explanation and foundation to
such formal manipulations.

In particular, the reason why the formal operations in this section work is that following:

The series Y, (—1)"n!z™, although does not converge, is “summable” in the
sense of Borel. It turns out that Borel summable series enjoy many properties of
convergent series, such as addition, subtraction, and termwise differentiation. As a
consequence, one could use Borel summable series to solve differential equations.

For an example of application of Borel summability to PDEs, check out the work of Prof.

\Saleh Tanveer of Ohio State University. )

9. More precisely, defined for all z € C— R*.

10. Either notice that (16) is in fact a first order equation in disguise, or write the integrand for z2y” 4+ (1+3z)y’ +y as
d

2.
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2. SUMMABALE SERIES

NOTATION. In presenting summability results, it is convenient to let the sum start at n = 0.
Therefore in the following we will use ZZ‘LO .

2.1. Holder, Cesaro, and Abel summabilities
2.1.1. Hoélder summability

THEOREM 1. Let 3> ay be a infinite series. Define

Spi=aop+ -+ an. (18)
Then
Zan:s:>lim 0TI g (19)
0 n—00 n+1
Proof. We need to prove
n—00 n—00 n+1
Let £ >0 be arbitrary. Since lim,, S, = s there is N1 € N such that
Vn > Ny, |sn—s|<§. (21)
With N; fixed, there is No € N such that
sot - tsy—(Nit+1)s| e
N <3 (22)
Now set N :=max {Ni, Na}. We have, for any n > N,
R e R
n n n
Thus ends the proof. O

DEFINITION 2. (HOLDER SUMMABILITY) '!Let Z;o:o a, be a infinite series. Define sp:=ag+ -+
an and

sﬁf” = Sp; (24)
(0) (0)
S+t sy,
sy) = T e (25)
(1) (1)
S+t sy,
s = R — (26)
Let ke NU{0}. If
lim sik) =seR, (27)
n—oo

we say the series Y an is Holder (H,k) summable. Denoted

Z an=S=5 (H, k) (28)
n=0

11. Math. Ann. 20 1882 535-549.
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Exercise 12. Prove that (H,0) summability is the same as convergence of series.

Example 3. We have

S (=g (H). (29)
n=0

Example 4. The series )~ ; n is not Holder summable for any k.

Proof. We have

©_n(n+l) n? 1) n? 2 n? 3)  n?
Thus
2
k) _ M
n T k2l (31)

(k)

Whatever k is, we always have lim,,_,~s,, = 00. O

Exercise 13. Prove that if a series is (H, k) summable to s, then this s is unique. (Hint:1? )

Exercise 14. Let ko > ki. Prove that if ZZO:O ay is (H, k1) summable to s, then it is also (H, k2) summable
with the same sum s. (Hint:!3 )

Exercise 15. Find a series that is (H,2) summable but not (H,1) summable. (Hint:!* )
2.1.2. Cesaro summability

DEFINITION 5. (CESARO SUMMABILITY) !°Let ZZ":O an be a infinite series. Define sp:=ag+ -+
an and

Sy(Lk) = sn+rsn_1+—r(T2T1) sn_2+'--+r(T+1)”;ﬁfr+n_1) 50; (32)
k r+1)---(r+n
p® .- ( )n!( ) (33)
If
(k)
lim —2~-=s€R, (34)

n—oo Dk)

say Y00 an is Cesaro (C, k) summable to s, denoted

Y an=s  (C,k). (35)
n=0

Exercise 16. Prove that

r(r+1) +m+r(7‘+1)--v(r+n71) _ (r+1)--v(r+n)‘ (36)

Trrt+— nl nl

(Hint:16 )

THEOREM 6. (KNOPP-SCHNEE) '7"An infinite series is (H, k) summable to s € R if and only if it
is (C, k) summable to s.

12. Limit is unique.

13. Apply Theorem 1 repeatedly.

14. (=1)"n.

15. Bull. des Sci. Math. (2) 14 1890 114-120.
16. Induction.

17. Konrad Knopp (1882 - 1957) proved (H, k) => (C, k) in an unpublished dissertation in 1907; Walter Schnee (1885-
1958) proved (C, k) => (H, k) in Math. Ann. 67 1909 110 - 125.
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Remark 7. As a consequence, in many textbooks the easier to understand Hoélder summability is
called Cesaro summability.

Exercise 17. Prove that (H,1) summability is equivalent to (C, 1) summability. (Hint:!® )

Remark 8. We notice that it is straightforward to generalize Definition 5 to the case k ¢ Z. Thus
we can talk about Cesaro summability with fractional order.

2.1.3. Abel summability

First we recall Abel’s Theorem

THEOREM 9. (ABEL) Let ZZOZO an, be a infinite series with limsupy,_co \an\l/": 1. Then

ian:sﬁ lim <i anx”>—s. (37)
n=0 n=0

r—1—

Proof. Exercise. (Hint:'?)

DEFINITION 10. (ABEL SUMMABILITY) Let ZZO:O an be a infinite series with imsupy,—co |an|1/":

we say the series is Abel summable to s, denoted

Z ap =38 (A) (39)
n=0

THEOREM 11. (FROBENIUS) 20Let ZZOZO an be a infinite series with limsup, o |an\1/": 1. Then

Zan:s (H,1) == Zan:s (A). (40)
n=0 n=0

Proof. For any |z| < 1, ZZOZO an x™ is absolutely convergent. Therefore we can apply Abel’s re-
summation trick to obtain:

o o
> ana™ = so+ > (sn—sp_1) 2"
n=0 n=1
o o
= 50+Z Spr™ — Z Sp—1x™
n=1 n=1
o
= so—sox+z sp (z — 2"t
n=1
(o]
= (1—-2) Z Spa” (41)
n=0

18. Direct calculation.
19. Apply Abel’s Test to ay-z™ (3. an bounded, 2™ decreasing) to show uniform convergence on [0, 1].
20. Jour. fiir Math. 89 1880 262-264.
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Applying the same trick one more time, we have

Zanx =(1—=x) Z (42)

where T, = so+ - + sn. Recalling (24) we have lim,,_, 7; T =5. Now notice that
Vie|<1,  (1-2)?)  (n+1)a"=1 (43)
We write =0
o0 o0 T
n _ 2 n n
Zoanx —s=(1—-x) Zo<n+1—s>(n—|—1)x. (44)

All we need to show is that the RHS —0 as z — 1.
Let £ >0 be arbitrary. Then there is N1 € N such that for all n > Ny,

Ty €.
n+1 ‘ <9 (4)
Now take § > 0 such that
M7 T, £
2 n °
5;_12%—1 —|—s](n+1)<2. (46)
Thus for all z € (1—46,1) we have
Z anpx" —s| <e. (47)
n=0
Thus ends the proof. O

In fact we have the following more general result.

THEOREM 12. Let ZZOZO an, be a infinite series with limsup, s co |an|1/" = 1. Assume there is
kEeNU{0} such that the series is (H, k) (equivalently (C,k)) summable to s € R, then it is Abel
summable to s.

2.2. Beyond Abel summability

It is easy to see that a series cannot be Abel summable if limsup,, |an|1/ "> 1. The following are
summation methods that can deal with this case.

DEFINITION 13. (BOREL SUMMABILITY) Let Y a, be a infinite series. Define

A 00 a
w(A)::/O e—tlz n—’!‘t”]dt. (48)

lim () =s€eR, (49)

A—00

If

we say the series is Borel summable to s, denoted

Y an=s  (B). (50)
n=0
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DEFINITION 14. (LEROY SUMMABILITY) Let ZZO:O an be a infinite series. Define using Gamma
function

(51)
If

lim F(t) =s € R, (52)
we say the series is Leroy summable to s.

Remark 15. Consider the power series > >° / 2". To fully understand convergence we have to
consider z € C. Then the usual convergence gives

V|z| <1, i 2" (53)
If we apply Abel summation, we obtain "
V|z|<1,z#1, i 2= (A); (54)
Application of Borel summation yields "
Vz with Rz < 1, i 2= (B); (55)
Finally if we apply Leroy summation, the conclusion becomes
VzeC—{zeR|z>1}, iz": (56)

A more powerful summation theory developed by Mittag-Leffler?! yields Z o A= % for all

complex values z # 1, however the definition involves too much complex analysis so we omit it here.
See (MOORE) for more details.

| Why do we want the sum to be 1/(1—2)? |

The crucial fact here is that, ﬁ is the unique analytic, that is complex differentiable, function

that equals >~ >° 2™ in the disk |z| < 1. Therefore a summation theory is reasonable if it can yield

0o 1
Zn:O 2= 1—2°

Remark 16. Let ZZ‘LO an 2™ = f(z) in the sense of convergence in a neighborhood of 0. In general,
The classical convergence would recover - a, 2" = f(z) for all |z| < R such that no singular point
of f is inside the circle |z| = R. On the other hand, Borel summation recovers the equality for all
z € P where P is the polygon enclosed by lines each passing a singular point while at the same time
perpendicular to the line connecting this singular point with the origin; Leroy summation recovers
the equality for all z except those on the ray extending the line segment connecting the origin to
every singular point; Finally Mittag-Leffler summation recovers the equality for all z € C except the
singular points.

21. Acta Mathematica Vol. 42, 1920.
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3. DIVERGENT SERIES THROUGH “SMOOTHED’’ PARTIAL SUMS

References.

e (TA0) Tao, Terence, The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable
analytic continuation, Blog post, 2010. (http://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-for-
mula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/)

3.1. Smoothed partial sums.
Recall the definition of series convergence:

Zzozl a,=s if and only if limy_,s Zgzl ap=S5.

This is equivalent to defining convergence of series through the limit

- n
Jim 37 () (57)
where 7: [0, 00) — R equals the characteristic function of the interval [0, 1]:
1 z€][0,1]

Now what if we consider other possible n? In particular, we can consider those 7 that satisfy:
i. neC([0,00));
ii. 3R> 0 such that n(z) =0 for all x > R;
iii. n(0)=1.

DEFINITION 17. (CUTOFF FUNCTION) We will call any n satisfying the above a “cutoff” function.
Exercise 18. Find the cutoff function corresponding to (H,1) and (H,2) sums.

PROPOSITION 18. Let >>°  an be absolutely convergent®? with sum s € R. Then for any “cutoff”

function n,
o0

. n
]\}gnmn ann(ﬁ)—s. (59)

Proof. It is clear that 7 is bounded, there is there is M > 0 such that |n(z)| < M for all x. Now

for any € > 0, since 7 is continuous, there is ¢ € (0,1) such that
€

Ve (0,9), In(z) —1| < 5T (60)

where

K:=>" |an| (61)
n=1

is finite thanks to the absolute convergence of 3" ay,.

22. That is ) |an| is also convergent.
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Agains thansk to this absolute convergence, there is N; € N such that for all n > Ny,

[e.e]

m;ﬂ lan| < m (62)

Now take N > N;j/§. For any n > N, we have % < ¢ and consequently

00 N N
[Z ann(%)]—s <D ann(%)—z an| +| > ann(%)— > an
n=1 n=1 n=1 n>N n>N
N
< [ an(-a()]+ el
n= n>
< %KJF(MH)—Q(MEH)
= e. (63)
The proposition is thus proved. Il

Now we consider the situation where Zzozl an is only conditionally convergent.

PROPOSITION 19. Let Z;ozl a,=s and let  be a cutoff function. Further assume thatn€ C'. Then

li n (ﬁ): . 64
Ngnoomla )= (64)

Proof. Application of Abel’s re-summation trick (note that for each fixed N, Zzo:l ann(%) only
has finitely many nonzero terms. In other words for each fixed N we are dealing with a finite sum)

gives [i M<%)] e {i [n(2) _n(n_;l)]}_s. 5)

Since n(0) =1, we have

=5 )]
Consequently
Li:l anﬁ(%)] —s=s <n(0) - n<%>> +ni:1 (Sn—$) [n(%) B n(n;\;l)] 7

i (Sn—S){n(%)—n(n—;\r,lﬂ: o+ > . (68)

ng\/ﬁ n>vVN

Denoting M :=max {[max,en|sn| + |s]], maxzer |7'(x)|}, we have

2.

N-1/2
< M/ /()| doz < M2 N~1/2, (69)
n<VN 0
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On the other hand, recalling that 77(%) =0 for all n> R N, we have, though application of MVT,

Z < sup |sp —s| Z M<n—;\71—%><( sup |sn—s|>RM. (70)
n>vVN n>VN VN<n<RN n>vN
We see that both —0 as N — oco. O

Problem 1. Can we drop the condition € C'? If not can we find a counter-example?

3.2. Understanding divergent series through smoothed partial sums.
3.2.1. Grandi’s series

Example 20. Consider Grandi’s series Y >~ (—=1)"~L Let n be a cutoff function that is further-
more C?. Then we have, after one application of Abel’s re-summation trick and then re-grouping,

S, £ O CE)

n=1 m=
Exercise 19. Prove (71). (Hint:?? )
The first term clearly — % On the other hand,

Exercise 20. Let M :=max;cr |n”(x)|. Prove that
2m—1 2m 2m+1 _
LSRG IR G o i ™

the absolute value of the second term is bounded by

(Hint:2* )

RN

ZQ—]]\@:%H()&SNHOO. (73)
m=1

Therefore we see that for any C? cut-off function 7, we have

o0

n 1
lim —ni( 1) =5 74
Jim ST (R) =5 (74
n=1
Exercise 21. Let
Y an=s  (H,1). (75)
n=1
Prove that for any C? cut-off function n we have
. - n
i, 3 ()= m
14 (—1)n-?

23. Either apply Abel’s resummation once then re-group, or apply Abel’s resummation once, write s, =

the % part, and then apply Abel’s resummation again to %Z (=)t (n(n/N)—n((n+1)/N)).

24. Write as [ (222/7]\,1)/1\7 n'—f 2(727:7;;”/1\7 n’. Change of variable to combine into one integral. Then apply MVT.

5 , sum
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(Hint:2 )

3.2.2. Zf;l 1= —%, and other absurd identities.

Now we consider the obviously divergent series > | 1. Note that none of the summation methods
discussed in the previous section applies to this series.
Let 1 be a C? cutoff function. Then we have

Sa(k) = 3 (F)

1<n<RN
1 n
=N > N"(Tv)]
[ 1<n<RN
= N / dx
| 1<n<RN (0 1/N N
N / (n( %)~ () dz +N/ dz. (77)
| 1<n<rN J(r=1)/N
Setting Cyy 0:= fo x) dx, we have
> n
S 1n(%)=N /n o (n(%) = n())de | +CyoN. (78)
n=1 1<n<RN

Now we notice:

n/N n n/N n/N /
/(n—l)/N (n<J_\7) B n(x)) do = /(n_l)/N [L n'(t) dt] dx

Therefore

Exercise 22. Prove that

/(:/T)/N (n(%) n(:r)>dw/(:/];m (n(:r)fn<n];1>>dx:0(%>, (80)

that is there is M > 0 such that the absolute value of the LHS is bounded by M /N?2. (Hint:26 )

25. Apply Abel’s resummation trick twice.
26. By (78) the difference is bounded by

/ / () — ()| dt | da. (81)
(n—1)/N | J(n—1)/N
Apply MVT.
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15

and consequently

n/N n/N _
¥ 3 o (@) e)a =5 2 [T () -

1<n<RN

or equivalently

Remark 21. We see that

in the sense that —% is the “cutoff-independent” part of the sum.

Problem 2. Let 1 be a smooth cutoff function. Prove that there is C,, 1, C, 2 € R such that
= ny_ 1 ) 1Y,

Z nn(w>—*ﬁ+0n,1N +O<N>’

S , 1

Z TL2 n(%):cnyzNj-‘rO(N)

1+2+3+-~:7%; 142243%+ .. =0.

Thus justifying

Remark 22. In general we have
b n\__Brt1 k+1 1
nzl” 77<N>7 1 Ok +O<N>

where By is the (k+ 1)-th Bernoulli number, and

o0
Cn,kl_/ rFn(r)de.
0
Therefore in a sense
By 11

149243k ... = .
+25 437+ 1

See (TA0) for more discussion on this.

(82)
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4. ADVANCED Torics, NOTES, AND COMMENTS

4.1. Differentiability of the Riemann function
References.

e (GERVER1969) Gerver, Joseph, The differentiability of the Riemann function at certain rational multiples of
7, PNAS, 1969, 62 (3), 668 — 670.

e (GERVER1970) Gerver, Joseph, The differentiability of the Riemann function at certain rational multiples of
7, Amer. J. Math., 1970, 92, 33 — 55.

Riemann once proposed the function
) . sin (n?z)
flx) = E_l — (92)

as a candidate of “everywhere continuous but nowhere differentiable” functions. The continuity is
a straightforward consequence of Weierstrass’s M-test, while the differentiability turned out to be
subtle. Finally it was settled by Joseph Gerver in a series of papers that the Riemann function is
indeed differentiable at certain values of z. In this section we illustrate the basic ideas of Gerver’s
proof through studying f(z) at =0 and z =r.

4.1.1. §(0) = +oo.

Since f(z) is clearly even, it suffices to consider the case z — 0+ . Thus we need to prove
. 1| <= sin(n2x)

lim — —5——+—0

o0t T LZ n?

Now consider x very small. We split

= +00. (93)

2

>~ sin (n2z) sin (n?z) sin (n?z) 04
P et lD Dl D Dl o (94)
n=1 n<\/m/x n=>\/m/x
Noticing that when n < \/m/z, sin (n?x) >0, we have
2

Z sin(n2&c)2 Z sin (n $)2 Z sin(m/2) 2 1 (95)

n?x nx /2 Tz
n<y/m/x n< \/g n< \/g \/_
where the fact that % is decreasing on (0, 7/2) is used.
On the other hand, we have

sin (n?x) 1 1 1 1 1 1 ~1/2
S USRS < B P R S _
P s A D S D W P et SUr— i (96)

n>y/n/x n=\/r/z n>y/m/x
Summarizing, we have
>~ sin (n2x) 2 1 —1)2
N > = - -
2 s /[\ﬁ ﬁ—ﬁ]x o

which clearly tends to +o00 as x— 0+ .
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4.1.2. Understanding f’(mw) = —1/2 through smoothed partial sum.
Set x =7 +t. Then we have

xiﬂ Z singfa;) _Z sin ( :%Z (n? 7r+n t) _Z (_1)"%. (98)

n=1 n=1 n=1

Thus in the following we will try to prove

[e.e]

: sin (n? ) 1
1 —)—_—t =
ar — (=1) n?x 2 (99)
This is clearly equivalent to a
e sin[(nt)y 1
1 B Yl AP0 100
ey — (=1) (nt)? 2 (100)
Now if we denote a
(2
n(z) =22 (f ) Nt (101)

(100) becomes
lim 3 (—1)%(%) - —% (102)

N—o0

from which we see that formally the limit —1/2 should not be a total surprise.
However, proving (102) turns out to be quite tricky, for the following reasons:

i. The function 7 is not really a “cutoff” function — there is no R > 0 such that n(z) = 0 for
x| > R;

ii. The decay of 7 is like 272, which is not sufficient for the “tail” part to vanish;

iii. n/(z) decays like 1/2 and n”(x) does not have decay anymore. In particular |n'(z)| is not
integrable on (0, 00).

It is hard to understand why ii and iii are serious problems before actually attempting to prove
(102). On the other hand, some light may be shed on their effects through the following result.
PROPOSITION 23. Let n(x) € C? satisfy the following

e there is M >0 such that supzer |n”(x)| < M;

o there is M'>0 and p>2 such that |zPn(x)| <M’ for all x.
Then (102) holds.

Proof. Take g€ <p%1, 2). Note that as p > 2, we have p’%l < 2 so such q exists.

Similar to Example 20 we calculate

q(—l)”ﬂ(ﬁ)— 1/N E/J <2m_1)_2n<27m)+n<2m;1). (103)

N 2

=

Il
—

n

As |n"(x)| < M, we have

() () )

m=1
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which gives

N4
v (mN , n@/N) M
;( 1) n(N)+ < N2 0 (105)
therefore B
N4
. A __l
a3 ()= -

< 3 &5

n>N1 n> N4

1

< NP MY —

n>ZNq n?

1
o /

< M Nalp=1)
= M/NP=ap=b . (107)
Summarizing, we have proved (102). O

Exercise 23. Show that (102) still holds if the second hypothesis is relaxed to z2n(z) — 0 as |z| — co.
Remark 24. In the case p=2, the above “tail estimate” becomes

> (—1)"?7(%)

n>N4

<M’ (108)

which does not vanish.
We may want to take advantage of the oscillating nature of (—1)" and write

£ )b AT

n large
But if n/(z) N%, we would reach

1 N
NZ ST =09 (110)

which is even worse than (108)! On the other hand,

1
241"

Exercise 24. Prove (102) for n(x)=

4.1.3. Estimating the tail: idea

Now we have convinced ourselves that the vanishing of the tail terms in the estimate for f/(7)=—1/2
does not easily follow from the “smoothed partial sum” framework that we have established, and
furthermore it is not a consequence of the “oscillation” (—1)". Then where does the cancelation come
from? The following is a revealing example, the motivation comes from writing

sin (n?2?%) sin (n?z?) sin (n? z?)
Zq — n?z? Z nZg? Z n? x? (111)
Now we have n>N n odd n even

Z sin (n? z?) —(22)1 Z sin (n? 2?) (n+2)z—na]~(2 m)_l/ sin (£7) de. (112)

2 2 2
nex
n odd n odd Nz §
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Example 25. We show that, if ¢ >3/2, then

[e’e} : 2
x—l/ &(f)dg—m. (113)
Nix 5
Let k € N be large. We have

N 3 JEr € N 3
(E+D7 gin (&2 +7) 5
+/\/ﬁ BT dv/&+7
VEDT [sin (€2)  gsin(€?)
— — d 114
/\/H [ & (€432 ¢
which can be bounded by
VET ¢
This means
4 [ sin (&2 _ C 1 1
T 1[\[% Slng(f )dffvl' 1 Z ENN2q$3NN2q—3’ (116)

k>(Nz)?

Remark 26. Note that (112) per se does not help in the proof, as the “~" actually has O(1) error

sin (z2) \/
due to the slow decay of n'= ( ;2 )) :

n sin (n?z?)

Thus we see that, to show > _ v (=1) — 0 with 2~ N~ we should try to show that

n2x2
sin (n2z?) sin (n? 22) . « 5
> oddn>NT —pigr and evenn>Ne —zz— both —0, taking advantage of the “long range

cancellation in the sine function and ignore the (—1)" which is essential for small n but becomes
useless when n — oo.

4.1.4. Estimating the tail: Gerver’s proof

Basic idea.

; 2 : 2.2
To carry out the plan we following Gerver’s proof. First at this stage writing Smn(; — ?) g ST

n2 g2
does not have any advantage anymore so we return to the original setting: Show

. asin(n®z) 1
wlﬂlo;( V= =7 (117)
We have seen that, using “smoothed partial sum”, for any N(z) >z (that is limwﬁoy =00,
N(z) . 2
: sin (n” ) 1
1 —yn =\ __ - 11
xlgg)n:l O i 5 (118)
Therefore the task is to show
., sin (n?x)
> (=1 g —0 (119)



20 MATH 317 WEEK 11: DIVERGENT SERIES

or equivalently
(2
Z (—1)"M:0(a€) as x— 0. (120)

2
n
n>N(x)

As we have discussed earlier, the (—1)" does not matter here. Therefore we need to show

sin (n?z sin (n?z
Y o ) wma Yy SO (121
n>N(x),n even n>N(z),n odd

In the following we will simply try to prove

(12
3 Sm§+$) = o(x) (122)
n>N(zx)
for appropriate N(z) < z~1.
The basic idea is to exploit the “long range” cancellation between sin (£) and sin (£ + 7). Assume
that n? x + 7 =n3x. The observation is that since N(z) can be taken “almost as large as” =, for
n> N(z), n?z is almost as large as N(x). Therefore nj ~ng. Thus

: 2 : 2
sin (1’;1 x) | sin (;12) <<i2 (123)
ni ny ni

Now the idea is to consider the chain

sin(n?z)  sin((n+1)%xz)
n? (n+1)2

4o (124)

and find for each n a “pair” n* such that n? z ~ (n*)? x + k 7 with some odd number k. To make this
possible we need sin (n?z),sin ((n+ 1)), .... to “fll” [-1, 1], the range of sin £&. For most n this is
true but for some it is not. The proof then divides into two parts. In the first part we show that
those “bad” n’s are so few that they do not cause trouble; In the second part we prove that for other
n’s the desired “pairing” can indeed be carried out.

In the following we take N (z)~ 2~ 13/14

Bad n’s.
We characterize the bad n’s by

n€ Kpaq<=Ji,j €N Co—prime,j<x_1/7, ‘n—Qx—WJZ <z~ Y7, (125)
Note that the condition can be written as
nxj—2mi|<a®j <27, (126)
In other words this implies (remember that z is very small)
(n+j)Pz—nlr~2mi (127)

2 -1/7

x) are very close. Recalling that j <z , this means that

~1/7

which means sin ((n+ j)% 2) and sin (n

sin ((n+ k)2 ) “almost has period” j <z~ 7. Such a small period implies that the distribution of
sin (n?x),sin ((n+1)2z),...,sin ((n + j)?z) (128)

in [—1, 1] are not very dense and the chance of finding cancellation “pairing” within them is slim.
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Now we show that for any subset Q@ C Kpaq,

; 2
D G P TE (129)
n>N(z),neQ "

RS ™

S 25~ K53, 0(:), O0().

In the study of limits, we often need to compare the “limiting behavior” of functions or sequences.
It is convenient to use these symbols.

e f < g means there is C' >0 such that f<Cyg;

e f~ygmeans f<gand g< f;
o f<g (or f=o0(g)) means 1im§:0;
e f=0(g) means there is C' >0 such that | f| <Cg;

Exercise 25. Prove the following:
a) fSg,9Sh=[fSh;
) fI1<lgllgl S Ihl = f<hb;
¢ ~g,gKh= f<h.
\_ ) f~9,9 f D

Remark 27. It is important to understand why we do not just prove

: 2
s (n-x
3 % <1 g (130)
n>N(z),n € Kpad

Exercise 26. Let Y>>  a, be convergent. Let {ni} be a subset of N. Does it follow that > 7"  an, also
converges? (Hint:?7 )

Now we prove (129). Since we do not expect any cancellation, we simply try to prove that the
bad n’s are few and far between and ) % is already <.

First notice that, for any two pairs of integers i1, j1, 12, jo satisfying j; fjm‘l/ " with each pair co-
prime, we have
2miy 2mig

. 2527 1 5 e (131)
Tn T J2

T J1j2"”

On the other hand, for each fixed (i, j), there are at most #~%7 k’s satisfying (125) and thus in

Kpaq. Thus we see that Kpaq are distributed around each 293—7 while occupies only x=Y 7/ D T= /7
of the whole {n > N(z)}. Consequently (a bit handwaving here)
v L Z L TN @) e M (132)

’I’L
n> N((E),TLEKbad TL>N

Remark 28. For rigorous implementation of the above idea, see (GERVER1970) pp.43 — 45.

27. No, =07
n
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Good n’s.
(Keep this picture in mind. w
The set {n > N(z)} consists of long “chains” of “good n’s” interrupted by “a few” “bad n’s’

clustered around every 290—7;2 with j < YT,

We have seen that the “bad n” terms sum up to o(z) because there are very few of them. In
the following we show that the “good n” terms also sum up to o(x), for a different reason: There is
much cancellation within each “chain”.

Now we try to define the “chains”. Let ¢; be the first number >N (x) that is not in Kpag. Then
t1,t1+1,t1+ 2, ... all belong to “good n’s” until we reach j; such that

Jity — %‘ <z 7. (133)

Then take t3 > t1 + j1 to be the first that is not in Kp.q, and so on.

Note that as t,, & Kpaq for every u=1,2,3,...., we must have j, > 2~ Y7, Now consider
jt. mod 2777 (134)
by Pigeon hold principle we have
. _27/x _
Gu< 4//7 ~ a3 (135)

We see that each “chain” contains at least /7 and at most =3/ numbers.

In the following we focus on one chain and omit the subscripts. Thus we study n=t¢,t+1, ...,
t+7—1

The first observation is that since n > N(x) = x , n? x> 1. Therefore trying to find
cancellation through the study of n?z, (n? + 1) x, ... is not efficient as the numbers are too wide
apart. Thus we try to replace (n+ p)?z by smaller numbers.

For any 0 < p < j, there is a unique oy, € [O,ﬁ) - [O, i—:) such that

—13/14

(t+p)lr=(t+p)la,+2kn for some k€7 (136)

Now we consider the relation between the v,’s.
If we denote

Bp:—(w—ap)<1—((t+—p)22>, (137)

t+p+1)
then we have

2
2=y By= (o= ) G Py (139)
and therefore
(t+p+1)2%(z—ap—Bp)=({t+p)*(x—ap) =2km. (139)

Now we start from o := ap and obtain 31, 32, ..., Bp—1 successively as above. We have

(t+p)? (sc—oz Zﬁ,) (t+p)?(z—ap) +2km. (140)
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Denoting ¢, := oy, — a and 6, := Zf_l Bi, we have
2mk
= 141
P wp (t+p) ( )
for some k € Z.
Now we estimate the size of each [, using (137). We have
2(t+p)+1 2(t+p)+1
— S A Nl i S A 142
Bp (t—l—p—|—1)2 | p| (t+p+1)2 ( )
which gives
5;,,—275” <2447, (143)
Exercise 27. Obtain (143). (Hint:28 )
This gives (recall that j <2 ~3/7)
0, 2PZ| < 42,17 (144)
Summarizing what we have so far: There is k € Z such that
‘¢p 2]€7T)2 - 2121: St2atm (145)
Recalling ¢, <t72, we have
2k 1 1/7
T 146
: ‘(t+p)2 p(t+p) (146)
which leads to
2km 2km
_ <2 U7 14
‘(t+p)2 |~ (147)
which in turn gives
Pp+ 2’” 212‘” <2417, (148)
This finally gives
2
LN L Pl (149)
27
Recalling that there is ¢ such that
‘ t—% <x_4/7:>‘t—2,—7;i Lo~ T < g7, (150)
Therefore
"fﬂ—?_m <7, (151)
™ J
Combining (149) and (151) we have
4y 2pi| a7
o k= (152)
24,
As ——*€10,1) we have
—Ca'7g 2;” k<14Ca'/7. (153)

28. ap~t’2 and t > p.
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for some constant C.
Summarize: For every p=0,1, ..., j — 1, we have found ¢, k such that (153) holds.
To see why this is good, we check the situation 0 < 22% — k < 1. In this case denote gp=2pi—kje

{0,1,...,7—1}. Then we have
<zl (154)

~

t2¢p_@
27 J

As j is the least integer such that (133) holds, i, j are co-prime. As a consequence we can pair up
each g, with g,/ such that

lap — (qp+1/2)| <1 (155)
which gives
[#2 by — (12 4y + )| ST, (156)
Application of MVT now gives (keep in mind that ¢ > p):

sin (t+p)*z | sin(t+p)’z sin (¢4 p)® (e +p)] | sin (t+p")* (@ + 1)

(t+p)? (t+p')? (t+p)? (t+p')?
. 2 . 2
_ |sint (;erp)] +Sm[t (;J;Jr wpf)]‘+0(t_zx3/7)
< 227, (157)

Therefore in this particular chain (denote it by R, u=1,2,3,...), we have

sinn’x —o 1T 1)7 1
P e D I S DI (158)

neR, neER, neR,

Note that the last inequality is due to n € R,==>n=t,t+1,...,t+j—1but j <t sot =2~ (t+ j) 2
for every j involved.
Now notice that R, N R, =& whenever u # v, we have

sin n’x 1 _
>, —a—saT Yy S<a/TN@) T e < (159)
neUS Ry n>N(z)
Finally, as
Q:={n|n>N(zx)} — Uiz Ry C Kpaq, (160)
we have, following (132),
neq neKbad
Therefore
. 2 : 2
YR e M =1m Y LTl (162)
n z—0 n<x
n>N(x) n>N(z)

The estimate for the tail is complete.

4.2. Tauberian theorems

THEOREM 29. (TAUBER) Let Z;o:o an be Abel summable. Further assume lim,, ,oon a,=0. Then
Z;O:o an 18 convergent.
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Proof. Let
o
Z ap =38 (4) (163)
n=0
Then we have
o
1 ml=
xl_)ml<z an T > s (164)
n=0
Now let N be large and set cty=1— % It suffices to prove
N 0o
Jim > an—Y anal|=0. (165)
n=0 n=0
We denote
mayi=max {[n |} (166)
which satisfies limy_,ocmy =0.
Now calculate
N 0o N 0o
YDETES SENETINN) SENCEIES R ) pEptte
n=0 n=0 n=0 n=N+1
N 00 20
N
< Z an(1—zN)n|+my41 Z e
n=0 n=N+1
N 00
_n GnMn 1
< Z:n_+n +mN+1N Z TN
n=0
N
— Zn:O anm +myy1. (167)
N
Clearly the 2nd term —0. That the first term —0 is left as an exercise. O

Exercise 28. Prove that if z,, — 0 then limy_,o, 22X FI8 — (Hint:29 )

N

Remark 30. D. E. Littlewood proved that the same conclusion still holds if a, = O(n~!), that is
there is M >0 such that |a,n| < M for all n.

/Tauberian Theorems N
The above theorem was proved by Tauber, which is the first theorem of the form:
If >, an is summable (according to certain summability) and a,, satisfies
some further decay conditions, then Y~  a, is convergent.
\Such theorems are called “Tauberian theorems”. g
29. Any ¢, there is N1 such that |z,| <& whenever n > N;1. Now split
D FIN T FIN G TNt FIN (168)

N

N N
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5. MORE EXERCISES AND PROBLEMS

Problem 3. If Y- 'a, is (Hk) (equivalently (Ck)) summable, then a,=O(n").
Problem 4. Let

i an=:s (H,1).
n=1

Prove that for any C! cut-off function 1 we have
oo

3 ()

Note that the regularity assumption is C! instead of CZ2.

Problem 5. Let Y™ | a, be a positive series. Assume there is a cutoff function n such that

= n
lin a (—) =seR.
n pa nl N
Prove or disprove: B
oo

What if s=+o00?

(169)

(170)

(171)

(172)
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