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1. Two Motivating Examples

�... the theory of divergent series is another striking example of the way in which mathematics has
grown. ... when a concept or technique proves to be useful even though the logic of it is confused or
even nonexistent, persistent research will uncover a logical justi�cation,...�

� Morris Kline1

1.1. Euler, 1754.

In 17542, Leonhard Euler studied the following ODE

x2 y 0+ y=x; y(0)= 0: (1)

Solving it by the method of power series3, Euler obtained

y(x)�x¡ (1!)x2+(2!)x3¡ (3!)x4+ ���=
X
n=1

1
(¡1)n¡1 (n¡ 1)!xn (2)

Exercise 1. (If you know some ODE) Derive (2).

Exercise 2. What is the radius of convergence for the series in (2)? (Ans:4 )

Then he used the following fact.

(n¡ 1)!=¡(n)=

Z
0

1
tn¡1 e¡t dt: (3)

Exercise 3. Prove (3).

Substituting (3) into (2), he argued

y(x) �
X
n=1

1

(¡1)n¡1xn
Z
0

1
tn¡1 e¡t dt

=
X
n=1

1

x

Z
0

1
(¡x t)n¡1 e¡t dt

� x

Z
0

1
"X
n=1

1

(¡x t)n¡1
#
e¡t dt

� x

Z
0

1 1

1+ x t
e¡t dt

=

Z
0

1 x
1+x t

e¡tdt: (4)

Exercise 4. Why are � used instead of = in some steps above?

1. in Mathematical Thoughts from Ancient to Modern Times, Oxford University Press, 1990. p. 1120 (Vol. 3).

2. Novi Comm. Acad. Sci. Petrop., 5, 1754/5, 205-37, pub. 1760.

3. Note that x=0 is a irregular singular point for the equation, therefore even the theory of Frobenius does not apply.

4. 0.
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Thus Euler obtained a formula for the solution

y(x)=

Z
0

1 x
1+ x t

e¡t dt: (5)

The function de�ned in (5) turns out to be well-de�ned and even smooth in (0;1). The question
now arises: Does y(x) in (5) solve (1)?

Surprisingly it does! We calculate:

y 0(x)=

Z
0

1 @
@x

�
x

1+x t

�
e¡t dt=

Z
0

1 e¡t dt

(1+ x t)2
: (6)

On the other hand, integration by parts gives

y(x)=x

Z
0

1 e¡t dt
1+x t

=x

�
1+

Z
0

1 x e¡t

(1+ x t)2
dt

�
=x¡ x2

Z
e¡t dt

(1+ x t)2
: (7)

Therefore

x2 y 0+ y=x: (8)

Exercise 5. (If you know some ODE) Solve (1) to obtain

y(x)= e1/x
Z
1/x

1 e¡t

t
dt: (9)

Note that y(x) is smooth in (0;1). (Hint:5 )

Exercise 6. Prove that for every x> 0,Z
0

1 x
1+x t

e¡t dt= e1/x
Z
1/x

1 e¡t

t
dt: (10)

Thus (9) and (5) represent the same function. (Hint:6 )

1.2. Laguerre, 1879.

In 18797, Edmond Laguerre (1834 - 1886) �solved� the equation8

x2 y 0+(x¡ 1) y=¡1: (11)

Exercise 7. Show that the natural requirement is y(0)= 1.

Using the method of power series, he obtained the solutions as

y(x)� 1+ x+(2!)x2+(3!)x3+ ���=
X
n=0

1

(n!)xn: (12)

5. It is a �rst order linear equation.

6. Change of variable s= t¡ 1/x in the RHS integral.

7. Bull. Soc. Math. de France, 7, 1879, 72 - 81.

8. In (Kline) y 0 is mistakenly printed as d2y

dx2
.
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Similar to what Euler did, he concluded using (3) that

y(x)=

Z
0

1 e¡t

1¡x t (13)

which is well-de�ned, in fact smooth, for all x< 0.9

Exercise 8. Prove directly that (13) solves (11).

Exercise 9. Prove that (13) solves (11) through exploring the relation between (13) and (5).

Exercise 10. Show that (13) solves (11) through exploring the relation between (12) and (2). Note that this is
not a proof of (13) solving (11), since for divergent series, the relation

X
n=1

1

an=
X
n=1

N

an+
X

n=N+1

1

an (14)

may not hold.

Exercise 11. Consider the following �Stieltjes series�

X
n=0

1

(¡1)nn!xn: (15)

a) Show formally that it satis�es

x2 y 00+(1+3x) y 0+ y=0; (16)

b) Show formally that the series sum up to

y(x)=

Z
0

1 e¡t

1+x t
dt; (17)

c) Prove that (17) solves (16). (Hint:10 )

As we have seen above, formal manipulation of divergent series may yield meaningful �sums�
for such series. The theory of summability provides mathematical explanation and foundation to
such formal manipulations.

In particular, the reason why the formal operations in this section work is that following:

The series
P

n=0
1 (¡1)nn! xn, although does not converge, is �summable� in the

sense of Borel. It turns out that Borel summable series enjoy many properties of
convergent series, such as addition, subtraction, and termwise di�erentiation. As a
consequence, one could use Borel summable series to solve di�erential equations.

For an example of application of Borel summability to PDEs, check out the work of Prof.
Saleh Tanveer of Ohio State University.

What is summability and one of the reasons for studying it.

9. More precisely, de�ned for all x2C¡R+.

10. Either notice that (16) is in fact a �rst order equation in disguise, or write the integrand for x2 y 00+(1+3x) y 0+ y as
d

dt
(���).
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2. Summabale Series

Notation. In presenting summability results, it is convenient to let the sum start at n = 0.
Therefore in the following we will use

P
n=0
1 .

2.1. Hölder, Cesàro, and Abel summabilities

2.1.1. Hölder summability

Theorem 1. Let
P

n=0
1 an be a in�nite series. De�ne

sn := a0+ ���+ an: (18)

Then X
n=0

1
an= s=) lim

n!1

s0+ ���+ sn
n+1

= s: (19)

Proof. We need to prove

lim
n!1

sn= s=) lim
n!1

s0+ ���+ sn
n+1

= s: (20)

Let "> 0 be arbitrary. Since limn!1sn= s there is N12N such that

8n>N1; jsn¡ sj<
"
2
: (21)

With N1 �xed, there is N22N such that����s0+ ���+ sN1¡ (N1+1) s
N2

����< "
2
: (22)

Now set N :=maxfN1; N2g. We have, for any n>N ,���s0+ ���+ sn
n

¡ s
���6 ����s0+ ���+ sN1¡ (N1+1) s

n

����+ ����(sN1+1¡ s)+ ���+(sn¡ s)
n

����<": (23)

Thus ends the proof. �

Definition 2. (Hölder Summability) 11Let
P

n=0
1 an be a in�nite series. De�ne sn :=a0+ ���+

an and

sn
(0)

:= sn; (24)

sn
(1)

:=
s0
(0)
+ ���+ sn

(0)

n+1
; (25)

sn
(2)

:=
s0
(1)
+ ���+ sn

(1)

n+1
; (26)

���
Let k 2N[f0g. If

lim
n!1

sn
(k)
= s2R; (27)

we say the series
P

n=0
1 an is Hölder (H,k) summable. DenotedX

n=0

1

an= s (H; k) (28)

11. Math. Ann. 20 1882 535-549.
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Exercise 12. Prove that (H; 0) summability is the same as convergence of series.

Example 3. We have X
n=0

1
(¡1)n= 1

2
(H; 1): (29)

Example 4. The series
P

n=0
1 n is not Hölder summable for any k.

Proof. We have

sn
(0)
=
n (n+1)

2
� n2

2!
=) sn

(1)� n2

3!
=) sn

(2)� n2

4!
=) sn

(3)� n2

5!
=)��� (30)

Thus

sn
(k)
=

n2

(k+2)!
: (31)

Whatever k is, we always have limn!1sn
(k)
=1. �

Exercise 13. Prove that if a series is (H; k) summable to s, then this s is unique. (Hint:12 )

Exercise 14. Let k2 > k1. Prove that if
P

n=0

1
an is (H; k1) summable to s, then it is also (H; k2) summable

with the same sum s. (Hint:13 )

Exercise 15. Find a series that is (H,2) summable but not (H,1) summable. (Hint:14 )

2.1.2. Cesàro summability

Definition 5. (Cesàro summability) 15Let
P

n=0
1 an be a in�nite series. De�ne sn := a0+ ���+

an and

Sn
(k)

:= sn+ r sn¡1+
r (r+1)

2!
sn¡2+ ���+

r (r+1)���(r+n¡ 1)
n!

s0; (32)

Dn
(k)

:=
(r+1) ��� (r+n)

n!
: (33)

If

lim
n!1

Sn
(k)

Dn
(k)

= s2R; (34)

say
P

n=0
1 an is Cesàro (C; k) summable to s, denotedX

n=0

1

an= s (C; k): (35)

Exercise 16. Prove that

1+ r+
r (r+1)

2!
+ ���+ r (r+1)���(r+n¡ 1)

n!
=
(r+1) ��� (r+n)

n!
: (36)

(Hint:16 )

Theorem 6. (Knopp-Schnee) 17An in�nite series is (H; k) summable to s2R if and only if it
is (C; k) summable to s.

12. Limit is unique.

13. Apply Theorem 1 repeatedly.

14. (¡1)nn.
15. Bull. des Sci. Math. (2) 14 1890 114-120.

16. Induction.

17. Konrad Knopp (1882 - 1957) proved (H; k) =) (C; k) in an unpublished dissertation in 1907; Walter Schnee (1885-
1958) proved (C; k)=) (H; k) in Math. Ann. 67 1909 110 - 125.
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Remark 7. As a consequence, in many textbooks the easier to understand Hölder summability is
called Cesàro summability.

Exercise 17. Prove that (H; 1) summability is equivalent to (C; 1) summability. (Hint:18 )

Remark 8. We notice that it is straightforward to generalize De�nition 5 to the case k2/ Z. Thus
we can talk about Cesàro summability with fractional order.

2.1.3. Abel summability

First we recall Abel's Theorem

Theorem 9. (Abel) Let
P

n=0
1 an be a in�nite series with limsupn!1 janj1/n=1. Then

X
n=0

1

an= s=) lim
x!1¡

 X
n=0

1

anx
n

!
= s: (37)

Proof. Exercise. (Hint:19 )
�

Definition 10. (Abel Summability) Let
P

n=0
1 an be a in�nite series with limsupn!1 janj1/n=

1. Then if

lim
x!1¡

 X
n=0

1

anx
n

!
= s; (38)

we say the series is Abel summable to s, denotedX
n=0

1

an= s (A) (39)

Theorem 11. (Frobenius) 20Let
P

n=0
1 an be a in�nite series with limsupn!1 janj1/n=1. ThenX

n=0

1

an= s (H; 1) =)
X
n=0

1

an= s (A): (40)

Proof. For any jxj < 1,
P

n=0
1 an x

n is absolutely convergent. Therefore we can apply Abel's re-
summation trick to obtain:X

n=0

1

anx
n = s0+

X
n=1

1

(sn¡ sn¡1)xn

= s0+
X
n=1

1

snx
n¡

X
n=1

1

sn¡1x
n

= s0¡ s0x+
X
n=1

1
sn (x

n¡xn+1)

= (1¡x)
X
n=0

1

snx
n: (41)

18. Direct calculation.

19. Apply Abel's Test to an � xn (
P

an bounded, xn decreasing) to show uniform convergence on [0; 1].

20. Jour. für Math. 89 1880 262-264.
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Applying the same trick one more time, we haveX
n=0

1

anx
n=(1¡x)2

X
n=0

1

Tnx
n (42)

where Tn= s0+ ���+ sn. Recalling (24) we have limn!1
Tn
n+1

= s. Now notice that

8jxj< 1; (1¡x)2
X
n=0

1

(n+1)xn=1: (43)

We write X
n=0

1

anx
n¡ s=(1¡x)2

X
n=0

1 �
Tn
n+1

¡ s
�
(n+1)xn: (44)

All we need to show is that the RHS ¡!0 as x¡! 1.
Let "> 0 be arbitrary. Then there is N12N such that for all n>N1,���� Tn

n+1
¡ s
����< "

2
; (45)

Now take � > 0 such that

�2
X
n=0

N1 ����� Tn
n+1

����+ s�(n+1)<
"
2
: (46)

Thus for all x2 (1¡ �; 1) we have �����X
n=0

1

anx
n¡ s

�����<": (47)

Thus ends the proof. �

In fact we have the following more general result.

Theorem 12. Let
P

n=0
1 an be a in�nite series with limsupn!1 janj1/n = 1. Assume there is

k 2N[ f0g such that the series is (H; k) (equivalently (C; k)) summable to s2R, then it is Abel
summable to s.

2.2. Beyond Abel summability
It is easy to see that a series cannot be Abel summable if limsupn!1 janj1/n> 1. The following are
summation methods that can deal with this case.

Definition 13. (Borel Summability) Let
P

n=0
1 an be a in�nite series. De�ne

 (�) :=

Z
0

�

e¡t

"X
n=0

1
an
n!
tn

#
dt: (48)

If

lim
�!1

 (�)= s2R; (49)

we say the series is Borel summable to s, denotedX
n=0

1
an= s (B): (50)
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Definition 14. (Leroy Summability) Let
P

n=0
1 an be a in�nite series. De�ne using Gamma

function

F (t) :=
X
n=0

1
¡(n t+1)

¡(n+1)
an: (51)

If

lim
t!1

F (t)= s2R; (52)

we say the series is Leroy summable to s.

Remark 15. Consider the power series
P

n=0
1 zn. To fully understand convergence we have to

consider z 2C. Then the usual convergence gives

8jz j< 1;
X
n=0

1

zn=
1

1¡ z ; (53)

If we apply Abel summation, we obtain

8jz j6 1; z=/ 1;
X
n=0

1

zn=
1

1¡ z (A); (54)

Application of Borel summation yields

8z with <z < 1;
X
n=0

1

zn=
1

1¡ z (B); (55)

Finally if we apply Leroy summation, the conclusion becomes

8z 2C¡fz 2Rj z> 1g;
X
n=0

1

zn=
1

1¡ z: (56)

A more powerful summation theory developed by Mittag-Le�er21 yields
P

n=0
1 zn =

1

1¡ z for all
complex values z=/ 1, however the de�nition involves too much complex analysis so we omit it here.
See (Moore) for more details.

The crucial fact here is that, 1

1¡ z is the unique analytic, that is complex di�erentiable, function
that equals

P
n=0
1 zn in the disk jz j<1. Therefore a summation theory is reasonable if it can yieldP

n=0
1 zn=

1

1¡ z .

Why do we want the sum to be 1/(1¡ z)?

Remark 16. Let
P

n=0
1 an z

n= f(z) in the sense of convergence in a neighborhood of 0. In general,
The classical convergence would recover

P
n=0
1 an z

n= f(z) for all jz j<R such that no singular point
of f is inside the circle jz j=R. On the other hand, Borel summation recovers the equality for all
z2P where P is the polygon enclosed by lines each passing a singular point while at the same time
perpendicular to the line connecting this singular point with the origin; Leroy summation recovers
the equality for all z except those on the ray extending the line segment connecting the origin to
every singular point; Finally Mittag-Le�er summation recovers the equality for all z2C except the
singular points.

21. Acta Mathematica Vol. 42, 1920.
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3. Divergent Series Through �Smoothed� Partial Sums

References.

� (Tao) Tao, Terence, The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable
analytic continuation , Blog post, 2010. (http://terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-for-
mula-bernoulli-numbers-the-zeta-function-and-real-variable-analytic-continuation/)

3.1. Smoothed partial sums.

Recall the de�nition of series convergence:P
n=1
1 an= s if and only if limN!1

P
n=1
N an= s.

This is equivalent to de�ning convergence of series through the limit

lim
N!1

X
n=1

1

an �
�
n
N

�
(57)

where �: [0;1) 7!R equals the characteristic function of the interval [0; 1]:

�(x)=

�
1 x2 [0; 1]
0 x> 1

: (58)

Now what if we consider other possible �? In particular, we can consider those � that satisfy:

i. � 2C([0;1));

ii. 9R> 0 such that �(x)= 0 for all x>R;

iii. �(0)= 1.

Definition 17. (Cutoff function) We will call any � satisfying the above a �cuto�� function.

Exercise 18. Find the cuto� function corresponding to (H; 1) and (H; 2) sums.

Proposition 18. Let
P

n=1
1 an be absolutely convergent22 with sum s 2R. Then for any �cuto��

function �,

lim
N!1

X
n=1

1

an �
�
n
N

�
= s: (59)

Proof. It is clear that � is bounded, there is there is M > 0 such that j�(x)j<M for all x. Now
for any "> 0, since � is continuous, there is � 2 (0; 1) such that

8x2 (0; �); j�(x)¡ 1j< "
2K

(60)

where

K :=
X
n=1

1

janj (61)

is �nite thanks to the absolute convergence of
P

an.

22. That is
P
janj is also convergent.
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Agains thansk to this absolute convergence, there is N12N such that for all n>N1,X
m=n+1

1

janj<
"

2 (M +1)
: (62)

Now take N >N1/�. For any n>N , we have n

N
<� and consequently�����

"X
n=1

1

an �
�
n
N

�#
¡ s

����� 6
�����X
n=1

N

an �
�
n
N

�
¡
X
n=1

N

an

�����+
�����X
n>N

an �
�
n
N

�
¡
X
n>N

an

�����
6
�����X
n=1

N

an
�
1¡ �

�
n

N

�������+X
n>N

janj
h����� n

N

����+1
i

6 "
2K

K +(M +1)
"

2 (M +1)
= ": (63)

The proposition is thus proved. �

Now we consider the situation where
P

n=1
1 an is only conditionally convergent.

Proposition 19. Let
P

n=1
1 an=s and let � be a cuto� function. Further assume that �2C1. Then

lim
N!1

X
n=1

1

an �
�
n
N

�
= s: (64)

Proof. Application of Abel's re-summation trick (note that for each �xed N ,
P

n=1
1 an �

¡ n
N

�
only

has �nitely many nonzero terms. In other words for each �xed N we are dealing with a �nite sum)
gives "X

n=1

1
an �

�
n
N

�#
¡ s=

(X
n=1

1
sn

�
�
�
n
N

�
¡ �
�
n+1
N

��)
¡ s: (65)

Since �(0)= 1, we have

s=
X
n=0

1

s

�
�
�
n
N

�
¡ �
�
n+1
N

��
: (66)

Consequently"X
n=1

1

an �
�
n
N

�#
¡ s= s

�
�(0)¡ �

�
1
N

��
+
X
n=1

1

(sn¡ s)
�
�
�
n
N

�
¡ �
�
n+1
N

��
: (67)

Clearly limN!1s
�
�(0)¡ �

�
1

N

��
=0. For the second term, we split

X
n=1

1

(sn¡ s)
�
�
�
n
N

�
¡ �
�
n+1
N

��
=
X

n6 N
p

+
X

n> N
p

: (68)

Denoting M :=maxf[maxn2N jsnj+ jsj];maxx2R j� 0(x)jg, we have�����
X

n6 N
p

�����6M
Z
0

N¡1/2

j� 0(x)jdx6M2N¡1/2; (69)
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On the other hand, recalling that �
¡ n
N

�
=0 for all n>RN , we have, though application of MVT,�����

X
n> N
p

�����6 sup
n> N
p jsn¡ sj

X
N

p
<n<RN

M

�
n+1
N

¡ n
N

�
6
�

sup
n> N
p jsn¡ sj

�
RM: (70)

We see that both ¡!0 as N ¡!1. �

Problem 1. Can we drop the condition � 2C1? If not can we �nd a counter-example?

3.2. Understanding divergent series through smoothed partial sums.

3.2.1. Grandi's series

Example 20. Consider Grandi's series
P

n=1
1 (¡1)n¡1. Let � be a cuto� function that is further-

more C2. Then we have, after one application of Abel's re-summation trick and then re-grouping,

X
n=1

1

(¡1)n¡1 �
�
n
N

�
=
�(1/N)

2
+
X
m=1

1 �
�
2m¡ 1
N

�
¡ 2 �

�
2m

N

�
+ �
�
2m+1

N

�
2

: (71)

Exercise 19. Prove (71). (Hint:23 )

The �rst term clearly ¡! 1

2
. On the other hand,

Exercise 20. Let M :=maxx2R j� 00(x)j. Prove that������ 2m¡ 1N

�
¡ 2 �

�
2m
N

�
+ �

�
2m+1
N

�����6MN¡2: (72)

(Hint:24 )

the absolute value of the second term is bounded by

X
m=1

RN
M

2N2 =
R
2N

¡! 0 as N ¡!1: (73)

Therefore we see that for any C2 cut-o� function �, we have

lim
N¡!1

X
n=1

1

(¡1)n¡1 �
�
n
N

�
=
1
2
: (74)

Exercise 21. Let X
n=1

1

an= s (H; 1): (75)

Prove that for any C2 cut-o� function � we have

lim
N¡!1

X
n=1

1

an �
�
n

N

�
= s: (76)

23. Either apply Abel's resummation once then re-group, or apply Abel's resummation once, write sn =
1+ (¡1)n¡1

2
, sum

the 1

2
part, and then apply Abel's resummation again to 1

2

P
(¡1)n¡1 (�(n/N)¡ �((n+1)/N)).

24. Write as
R
(2m¡1)/N
2m/N

� 0¡
R
2m/N

(2m+1)/N
�0. Change of variable to combine into one integral. Then apply MVT.
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(Hint:25 )

3.2.2.
P

n=1
1 1=¡1

2
, and other absurd identities.

Now we consider the obviously divergent series
P

n=1
1 1. Note that none of the summation methods

discussed in the previous section applies to this series.
Let � be a C2 cuto� function. Then we haveX

n=1

1

1 � �
�
n
N

�
=

X
16n6RN

�
�
n
N

�
= N

" X
16n6RN

1
N
�
�
n
N

�#

= N

24 X
16n6RN

Z
(n¡1)/N

n/N

�
�
n
N

�
dx

35
= N

24 X
16n6RN

Z
(n¡1)/N

n/N �
�
�
n
N

�
¡ �(x)

�
dx

35+N Z
0

1
�(x) dx: (77)

Setting C�;0 :=
R
0

1
�(x) dx, we have

X
n=1

1

1 � �
�
n
N

�
=N

24 X
16n6RN

Z
(n¡1)/N

n/N �
�
�
n
N

�
¡ �(x)

�
dx

35+C�;0N: (78)

Now we notice:Z
(n¡1)/N

n/N �
�
�
n
N

�
¡ �(x)

�
dx =

Z
(n¡1)/N

n/N
"Z

x

n/N

� 0(t) dt

#
dx

=

Z
n¡1
N
6x6t6n

N

� 0(t) d(x; t)

=

Z
(n¡1)/N

n/N
"Z

(n¡1)/N

t

� 0(t) dx

#
dt

=

Z
(n¡1)/N

n/N
"Z

(n¡1)/N

x

� 0(x) dt

#
dx: (79)

Therefore

Exercise 22. Prove thatZ
(n¡1)/N

n/N �
�
�
n

N

�
¡ �(x)

�
dx¡

Z
(n¡1)/N

n/N
�
�(x)¡ �

�
n¡ 1
N

��
dx=O

�
1

N2

�
; (80)

that is there is M > 0 such that the absolute value of the LHS is bounded by M/N2. (Hint:26 )

25. Apply Abel's resummation trick twice.

26. By (78) the di�erence is bounded byZ
(n¡1)/N

n/N
"Z

(n¡1)/N

n/N

j�0(x)¡ � 0(t)jdt
#
dx: (81)

Apply MVT.
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and consequently

N
X

16n6RN

Z
(n¡1)/N

n/N �
�
�
n
N

�
¡ �(x)

�
dx =

N
2

X
16n6RN

Z
(n¡1)/N

n/N
�
�
�
n
N

�
¡ �
�
n¡ 1
N

��
dx

+O

�
1
N

�
=

1
2

X
16n6RN

�
�
�
n
N

�
¡ �
�
n¡ 1
N

��
+O

�
1
N

�
= ¡1

2
+O

�
1
N

�
: (82)

Summarizing, we have proved for any C2 cuto� function �,X
n=1

1

�
�
n
N

�
=¡1

2
+C�;0N +O

�
1
N

�
; (83)

or equivalently

lim
N!1

"X
n=1

1

�
�
n
N

�
¡C�;0N

#
=¡1

2
: (84)

Remark 21. We see that X
n=1

1
1=¡1

2
(85)

in the sense that ¡1

2
is the �cuto�-independent� part of the sum.

Problem 2. Let � be a smooth cuto� function. Prove that there is C�;1; C�;22R such thatX
n=1

1

n �
�
n

N

�
=¡ 1

12
+C�;1N2+O

�
1

N

�
; (86)

X
n=1

1

n2 �
�
n

N

�
=C�;2N3+O

�
1

N

�
: (87)

Thus justifying

1+2+3+ ���=¡ 1

12
; 1+ 22+32+ ���=0: (88)

Remark 22. In general we haveX
n=1

1

nk �
�
n
N

�
=¡Bk+1

k+1
+C�;kN

k+1+O

�
1
N

�
(89)

where Bk+1 is the (k+1)-th Bernoulli number, and

C�;k :=

Z
0

1
xk �(x) dx: (90)

Therefore in a sense

1+2k+3k+ ���=¡Bk+1
k+1

: (91)

See (Tao) for more discussion on this.
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4. Advanced Topics, Notes, and Comments

4.1. Di�erentiability of the Riemann function
References.

� (Gerver1969) Gerver, Joseph, The di�erentiability of the Riemann function at certain rational multiples of
�, PNAS, 1969, 62 (3), 668 � 670.

� (Gerver1970) Gerver, Joseph, The di�erentiability of the Riemann function at certain rational multiples of
�, Amer. J. Math., 1970, 92, 33 � 55.

Riemann once proposed the function

f(x) :=
X
n=1

1
sin (n2x)

n2
(92)

as a candidate of �everywhere continuous but nowhere di�erentiable� functions. The continuity is
a straightforward consequence of Weierstrass's M-test, while the di�erentiability turned out to be
subtle. Finally it was settled by Joseph Gerver in a series of papers that the Riemann function is
indeed di�erentiable at certain values of x. In this section we illustrate the basic ideas of Gerver's
proof through studying f(x) at x=0 and x= �.

4.1.1. f 0(0)=+1.

Since f(x) is clearly even, it su�ces to consider the case x! 0+ . Thus we need to prove

lim
x!0+

1
x

"X
n=1

1
sin (n2x)

n2
¡ 0

#
=+1: (93)

Now consider x very small. We splitX
n=1

1
sin (n2x)
n2x

=
X

n< �/x
p sin (n2x)

n2x
+

X
n> �/x
p sin (n2x)

n2x
: (94)

Noticing that when n< �/x
p

, sin (n2x)> 0, we have

X
n< �/x
p sin (n2x)

n2x
>

X
n<

�

2x

q sin (n2x)
n2x

>
X

n<
�

2x

q sin (�/2)
�/2

=
2
�

r
1

x
p ; (95)

where the fact that sinx
x

is decreasing on (0; �/2) is used.
On the other hand, we have������
X

n> �/x
p sin (n2x)

n2x

������6x¡1
X

n> �/x
p 1

n2
6x¡1

X
n> �/x
p

�
1

n¡ 1 ¡
1
n

�
6 1

�
p

¡ x
p x¡1/2: (96)

Summarizing, we have X
n=1

1
sin (n2x)
n2x

>
"

2
�

r
¡ 1

�
p

¡ x
p

#
x¡1/2 (97)

which clearly tends to +1 as x! 0+ .
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4.1.2. Understanding f 0(�)=¡1/2 through smoothed partial sum.

Set x= �+ t. Then we have

1
x¡ �

"X
n=1

1
sin (n2x)

n2
¡
X
n=1

1
sin (n2�)

n2

#
=
1
t

X
n=1

1
sin (n2�+n2 t)

n2
=
X
n=1

1

(¡1)n sin (n
2 t)

n2 t
: (98)

Thus in the following we will try to prove

lim
x!0+

X
n=1

1

(¡1)n sin (n
2x)

n2x
=¡1

2
: (99)

This is clearly equivalent to

lim
t!0+

X
n=1

1

(¡1)nsin [(n t)
2]

(n t)2
=¡1

2
: (100)

Now if we denote

�(x) :=
sin (x2)
x2

; N := t¡1; (101)

(100) becomes

lim
N!1

X
n=1

1

(¡1)n �
�
n
N

�
=¡1

2
(102)

from which we see that formally the limit ¡1/2 should not be a total surprise.
However, proving (102) turns out to be quite tricky, for the following reasons:

i. The function � is not really a �cuto�� function � there is no R > 0 such that �(x) = 0 for
jxj>R;

ii. The decay of � is like x¡2, which is not su�cient for the �tail� part to vanish;

iii. � 0(x) decays like 1/x and � 00(x) does not have decay anymore. In particular j� 0(x)j is not
integrable on (0;1).

It is hard to understand why ii and iii are serious problems before actually attempting to prove
(102). On the other hand, some light may be shed on their e�ects through the following result.

Proposition 23. Let �(x)2C2 satisfy the following

� there is M > 0 such that supx2R j� 00(x)j<M;

� there is M 0> 0 and p> 2 such that jxp �(x)j<M 0 for all x.

Then ( 102) holds.

Proof. Take q 2
�

p

p¡ 1 ; 2
�
. Note that as p> 2, we have p

p¡ 1 < 2 so such q exists.

Similar to Example 20 we calculate

X
n=1

N q

(¡1)n �
�
n
N

�
=¡�(1/N)

2
¡
X
m=1

N q/2 �
�
2m¡ 1
N

�
¡ 2 �

�
2m

N

�
+ �
�
2m+1

N

�
2

: (103)

As j� 00(x)j<M , we have������ 2m¡ 1N

�
¡ 2 �

�
2m

N

�
+ �

�
2m+1

N

�����< M

N2
(104)
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which gives �����X
n=1

N q

(¡1)n �
�
n
N

�
+
�(1/N)

2

�����<M
4
N q¡2¡! 0 (105)

therefore

lim
N!1

X
n=1

N q

(¡1)n �
�
n
N

�
=¡1

2
: (106)

On the other hand we have����� X
n>N q

(¡1)n �
�
n
N

������ <
X
n>N q

����� n
N

��
n
N

�p��� N p

np

6 N pM 0
X
n>N q

1
np

< N pM 0 1

N q(p¡1)

= M 0N p¡q(p¡1)¡! 0: (107)

Summarizing, we have proved (102). �

Exercise 23. Show that (102) still holds if the second hypothesis is relaxed to x2 �(x)¡! 0 as jxj ¡!1.

Remark 24. In the case p=2, the above �tail estimate� becomes����� X
n>N q

(¡1)n �
�
n
N

������<M 0 (108)

which does not vanish.
We may want to take advantage of the oscillating nature of (¡1)n and write����� X

n large

(¡1)n �
�
n
N

������6X
m

������ 2m¡ 1N

�
¡ �
�
2m
N

������ 1
N

X
m

����� 0� 2m¡ 1N

�����: (109)

But if � 0(x)� 1

x
, we would reach

1
N

X
m

N
2m¡ 1 =1 (110)

which is even worse than (108)! On the other hand,

Exercise 24. Prove (102) for �(x)= 1

x2+1
.

4.1.3. Estimating the tail: idea

Now we have convinced ourselves that the vanishing of the tail terms in the estimate for f 0(�)=¡1/2
does not easily follow from the �smoothed partial sum� framework that we have established, and
furthermore it is not a consequence of the �oscillation� (¡1)n. Then where does the cancelation come
from? The following is a revealing example, the motivation comes from writingX

n>N q

(¡1)n sin (n
2x2)

n2x2
=
X
n odd

sin (n2x2)
n2x2

¡
X
n even

sin (n2x2)
n2x2

(111)

Now we haveX
n odd

sin (n2x2)
n2x2

=(2x)¡1
X
n odd

sin (n2x2)
n2x2

[(n+2)x¡nx]� (2x)¡1
Z
N qx

sin (�2)
�2

d�: (112)
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Example 25. We show that, if q > 3/2, then

x¡1
Z
N qx

1 sin (�2)
�2

d�¡! 0: (113)

Let k 2N be large. We haveZ
k�

p

(k+1)�
p

sin (�2)
�2

d�+

Z
(k+1)�

p (k+2)�
p

sin (�2)
�2

d� =

Z
k�

p

(k+1)�
p

sin (�2)
�2

d�

+

Z
k�

p

(k+1)�
p

sin (�2+�)
�2+�

d �2+�
p

=

Z
k�

p

(k+1)�
p "

sin (�2)
�2

¡ � sin (�2)
(�2+�)3/2

#
d� (114)

which can be bounded by

C

Z
k�

p

(k+1)�
p

1
�4
d�� C

k2
: (115)

This means

x¡1
Z
N qx

1 sin (�2)
�2

d��x¡1
X

k>(N qx)2

C
k2
� 1

N2qx3
� 1

N2q¡3 : (116)

Remark 26. Note that (112) per se does not help in the proof, as the ��� actually has O(1) error

due to the slow decay of � 0=
�
sin (x2)
x2

�0
.

Thus we see that, to show
P

n>N q (¡1)n sin (n2x2)
n2x2

¡!0 with x�N¡1, we should try to show thatP
n odd;n>N q

sin (n2 x2)
n2x2

and
P

n even;n>N q
sin (n2 x2)
n2x2

both ¡!0, taking advantage of the �long range�
cancellation in the sine function and ignore the (¡1)n which is essential for small n but becomes
useless when n¡!1.

4.1.4. Estimating the tail: Gerver's proof

Basic idea.
To carry out the plan we following Gerver's proof. First at this stage writing sin (n2 x)

n2x
as sin (n2x2)

n2x2

does not have any advantage anymore so we return to the original setting: Show

lim
x¡!0

X
n=1

1

(¡1)n sin (n
2x)

n2x
=¡1

2
: (117)

We have seen that, using �smoothed partial sum�, for any N(x)�x (that is limx!0
N(x)

x
=1,

lim
x!0

X
n=1

N(x)

(¡1)n sin (n
2x)

n2x
=¡1

2
: (118)

Therefore the task is to show X
n>N(x)

(¡1)n sin (n
2x)

n2x
¡! 0 (119)
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or equivalently X
n>N(x)

(¡1)n sin (n
2x)

n2
= o(x) as x! 0: (120)

As we have discussed earlier, the (¡1)n does not matter here. Therefore we need to showX
n>N(x);n even

sin (n2x)
n2

= o(x) and
X

n>N(x);n odd

sin (n2x)
n2

= o(x): (121)

In the following we will simply try to proveX
n>N(x)

sin (n2x)
n2

= o(x) (122)

for appropriate N(x)�x¡1.
The basic idea is to exploit the �long range� cancellation between sin (�) and sin (�+�). Assume

that n12x+ �=n22x. The observation is that since N(x) can be taken �almost as large as� x¡1, for
n>N(x), n2x is almost as large as N(x). Therefore n1�n2. Thus

sin (n12x)
n1
2

+
sin (n22 )
n2
2

� 1

n1
2
: (123)

Now the idea is to consider the chain

sin (n2x)
n2

+
sin ((n+1)2x)

(n+1)2
+ ��� (124)

and �nd for each n a �pair� n� such that n2 x� (n�)2 x+k � with some odd number k. To make this
possible we need sin (n2x); sin ((n+1)2x); :::: to ��ll� [¡1; 1], the range of sin �. For most n this is
true but for some it is not. The proof then divides into two parts. In the �rst part we show that
those �bad� n's are so few that they do not cause trouble; In the second part we prove that for other
n's the desired �pairing� can indeed be carried out.

In the following we take N(x)� x¡13/14.

Bad n's.
We characterize the bad n's by

n2Kbad()9i; j 2N co-prime; j <x¡1/7;
����n¡ 2� i

x j

����<x¡4/7: (125)

Note that the condition can be written as

jnx j¡ 2� ij<x3/7 j <x2/7: (126)

In other words this implies (remember that x is very small)

(n+ j)2x¡n2x� 2� i (127)

which means sin ((n+ j)2 x) and sin (n2 x) are very close. Recalling that j <x¡1/7, this means that
sin ((n+ k)2x) �almost has period� j <x¡1/7. Such a small period implies that the distribution of

sin (n2x); sin ((n+1)2x); :::; sin ((n+ j)2x) (128)

in [¡1; 1] are not very dense and the chance of �nding cancellation �pairing� within them is slim.
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Now we show that for any subset Q�Kbad,������
X

n>N(x);n2Q

sin (n2x)
n2

������.x15/14�x: (129)

In the study of limits, we often need to compare the �limiting behavior� of functions or sequences.
It is convenient to use these symbols.

� f . g means there is C > 0 such that f 6Cg;
� f � g means f . g and g. f ;

� f� g (or f = o(g)) means lim f

g
=0;

� f =O(g) means there is C > 0 such that jf j6Cg;
Exercise 25. Prove the following:

a) f . g; g. h=) f . h;
b) jf j� jg j; jg j. jhj=) f�h;

c) f � g; g�h=) f�h.

.;&;�;�;�; o(�); O(�).

Remark 27. It is important to understand why we do not just prove������
X

n>N(x);n2Kbad

sin (n2x)
n2

������. x15/14�x: (130)

Exercise 26. Let
P

n=1

1
an be convergent. Let fnkg be a subset of N. Does it follow that

P
k=1

1
ank also

converges? (Hint:27 )

Now we prove (129). Since we do not expect any cancellation, we simply try to prove that the
bad n's are few and far between and

P 1

n2
is already�x.

First notice that, for any two pairs of integers i1; j1; i2; j2 satisfying ji.x¡1/7 with each pair co-
prime, we have ����2� i1x j1

¡ 2� i2
x j2

����> 2�
x

1
j1 j2

& x¡5/7: (131)

On the other hand, for each �xed (i; j), there are at most x¡4/7 k's satisfying (125) and thus in
Kbad. Thus we see thatKbad are distributed around each 2� i

x j
while occupies only x¡4/7/x¡5/7=x1/7

of the whole fn>N(x)g. Consequently (a bit handwaving here)X
n>N(x);n2Kbad

1

n2
�x1/7

X
n>N(x)

1

n2
� x1/7N(x)¡1�x15/14�x: (132)

Remark 28. For rigorous implementation of the above idea, see (Gerver1970) pp.43 � 45.

27. No. (¡1)n
n

.
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Good n's.

The set fn > N(x)g consists of long �chains� of �good n's� interrupted by �a few� �bad n's'
clustered around every 2� i

x j
with j <x¡1/7.

Keep this picture in mind.

We have seen that the �bad n� terms sum up to o(x) because there are very few of them. In
the following we show that the �good n� terms also sum up to o(x), for a di�erent reason: There is
much cancellation within each �chain�.

Now we try to de�ne the �chains�. Let t1 be the �rst number >N(x) that is not in Kbad. Then
t1; t1+1; t1+2; ::: all belong to �good n's� until we reach j1 such that����j1 t1¡ 2� i

x

����6 x¡4/7: (133)

Then take t2> t1+ j1 to be the �rst that is not in Kbad, and so on.
Note that as tu2/Kbad for every u=1; 2; 3; ::::, we must have ju> x¡1/7. Now consider

j tu mod
2�
x
; (134)

by Pigeon hold principle we have

ju6
2�/x

x¡4/7
�x¡3/7: (135)

We see that each �chain� contains at least x¡1/7 and at most x¡3/7 numbers.
In the following we focus on one chain and omit the subscripts. Thus we study n= t; t+ 1; :::;

t+ j ¡ 1.
The �rst observation is that since n > N(x) = x¡13/14, n2 x � 1. Therefore trying to �nd

cancellation through the study of n2 x; (n2 + 1) x; ::: is not e�cient as the numbers are too wide
apart. Thus we try to replace (n+ p)2x by smaller numbers.

For any 06 p< j, there is a unique �p2
h
0;

2�

(t+ p)2

�
�
h
0;

2�

t2

�
such that

(t+ p)2x=(t+ p)2�p+2 k� for some k 2Z (136)

Now we consider the relation between the  p's.
If we denote

�p := (x¡�p)
�
1¡ (t+ p)2

(t+ p+1)2

�
; (137)

then we have

x¡�p¡ �p=(x¡�p)
(t+ p)2

(t+ p+1)2
(138)

and therefore

(t+ p+1)2 (x¡�p¡ �p)= (t+ p)2 (x¡�p)= 2 k�: (139)

Now we start from � :=�0 and obtain �1; �2; :::; �p¡1 successively as above. We have

(t+ p)2

 
x¡�¡

X
1

p¡1

�i

!
=(t+ p)2 (x¡�p)+ 2 k�: (140)
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Denoting  p :=�p¡� and �p :=
P

1
p¡1 �i, we have

�p=  p+
2� k

(t+ p)2
(141)

for some k 2Z.
Now we estimate the size of each �p using (137). We have�����p¡x 2 (t+ p)+ 1

(t+ p+1)2

����= j�pj ����2 (t+ p)+ 1

(t+ p+1)2

���� (142)

which gives �����p¡ 2x
t

����. t¡2x4/7: (143)

Exercise 27. Obtain (143). (Hint:28 )

This gives (recall that j.x¡3/7)�����p¡ 2 p x
t

����. t¡2x1/7: (144)

Summarizing what we have so far: There is k 2Z such that���� p+ 2 k�

(t+ p)2
¡ 2 p x

t

����. t¡2x1/7: (145)

Recalling  p. t¡2, we have ���� 2 k�

(t+ p)2

����. 1

p (t+ p)
x1/7 (146)

which leads to ���� 2 k�

(t+ p)2
¡ 2 k�

t2

����. t¡2x1/7 (147)

which in turn gives ���� p+ 2 k�

t2
¡ 2 p x

t

����. t¡2x1/7: (148)

This �nally gives ���� t2  p2�
+ k¡ t p x

�

����.x1/7: (149)

Recalling that there is i such that����j t¡ 2� i
x

����6x¡4/7=) ����t¡ 2� i
j x

����6 x¡4/7 j¡1.x¡3/7: (150)

Therefore ���� t p x� ¡ 2 p i
j

����. x1/7: (151)

Combining (149) and (151) we have���� t2  p2�
+ k¡ 2 p i

j

����.x1/7: (152)

As t2  p
2�

2 [0; 1) we have
¡Cx1/76 2 p i

j
¡ k6 1+Cx1/7: (153)

28. �p� t¡2 and t� p.

March 21, 2014 23



for some constant C.
Summarize: For every p=0; 1; :::; j¡ 1, we have found i; k such that (153) holds.
To see why this is good, we check the situation 0< 2 p i

j
¡k<1. In this case denote qp=2 p i¡k j2

f0; 1; :::; j¡ 1g. Then we have ���� t2  p2�
¡ qp
j

����.x1/7: (154)

As j is the least integer such that (133) holds, i; j are co-prime. As a consequence we can pair up
each qp with qp0 such that

jqp¡ (qp0+1/2)j6 1 (155)

which gives

jt2  p¡ (t2  p0+�)j.x1/7: (156)

Application of MVT now gives (keep in mind that t� p):����sin (t+ p)2x

(t+ p)2
+

sin (t+ p0)2x

(t+ p0)2

���� =

���� sin [(t+ p)2 (�+  p)]

(t+ p)2
+

sin (t+ p0)2 (�+  p0)

(t+ p0)2

����
=

���� sin [t2 (�+  p)]

t2
+

sin [t2 (�+  p0)]

t2

����+O¡t¡2x3/7�
. t¡2x1/7: (157)

Therefore in this particular chain (denote it by Ru, u=1; 2; 3; :::), we haveX
n2Ru

sinn2x
n2

.
X
n2Ru

t¡2x1/7. x1/7
X
n2Ru

1

n2
: (158)

Note that the last inequality is due to n2Ru=)n= t; t+1; :::; t+ j¡ 1 but j� t so t¡2� (t+ j)¡2

for every j involved.
Now notice that Ru\Rv=? whenever u=/ v, we haveX

n2[u=11 Ru

sinn2x
n2

.x1/7
X

n>N(x)

1

n2
6 x1/7N(x)¡1�x15/14�x: (159)

Finally, as

Q := fnjn>N(x)g¡[u=11 Ru�Kbad; (160)

we have, following (132), X
n2Q

sinn2x
n2

6
X

n2Kbad

1

n2
.x15/14�x: (161)

Therefore X
n>N(x)

sinn2x
n2

.x15/14�x=) lim
x!0

X
n>N(x)

sinn2x
n2x

. x1/14¡! 0: (162)

The estimate for the tail is complete.

4.2. Tauberian theorems

Theorem 29. (Tauber) Let
P

n=0
1 an be Abel summable. Further assume limn!1n an=0. ThenP

n=0
1 an is convergent.
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Proof. Let X
n=0

1

an= s (A): (163)

Then we have

lim
x!1

 X
n=0

1

anx
n

!
= s: (164)

Now let N be large and set xN =1¡ 1

N
. It su�ces to prove

lim
N!1

�����X
n=0

N

an¡
X
n=0

1

anxN
n

�����=0: (165)

We denote

mN :=max
n>N

fjnanjg (166)

which satis�es limN!1mN =0.
Now calculate�����X

n=0

N

an¡
X
n=0

1

anxN
n

����� 6
�����X
n=0

N

an (1¡ xNn )

�����+
����� X
n=N+1

1

anxN
n

�����
6
�����X
n=0

N

an (1¡ xN)n

�����+mN+1

����� X
n=N+1

1
xN
n

n

�����
6
�����
P

n=0
N ann

N

�����+mN+1
1
N

�����X
n=0

1
xN
n

�����
=

�����
P

n=0
N ann

N

�����+mN+1: (167)

Clearly the 2nd term ¡!0. That the �rst term ¡!0 is left as an exercise. �

Exercise 28. Prove that if xn¡! 0 then limN!1
x1+ ���+xN

N
=0. (Hint:29 )

Remark 30. D. E. Littlewood proved that the same conclusion still holds if an=O(n¡1), that is
there is M > 0 such that jannj<M for all n.

The above theorem was proved by Tauber, which is the �rst theorem of the form:

If
P

n=0
1 an is summable (according to certain summability) and an satis�es

some further decay conditions, then
P

n=0
1 an is convergent.

Such theorems are called �Tauberian theorems�.

Tauberian Theorems

29. Any ", there is N1 such that jxnj<" whenever n>N1. Now split

x1+ ���+xN
N

=
x1+ ���+xN1

N
+
xN1+1+ ���+xN

N
: (168)
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5. More Exercises and Problems

Problem 3. If
P

n=0

1
an is (H,k) (equivalently (C,k)) summable, then an=O(nk).

Problem 4. Let X
n=1

1

an= s (H; 1): (169)

Prove that for any C1 cut-o� function � we have

lim
N¡!1

X
n=1

1

an �
�
n

N

�
= s: (170)

Note that the regularity assumption is C1 instead of C2.

Problem 5. Let
P

n=1

1
an be a positive series. Assume there is a cuto� function � such that

lim
N!1

X
n=1

1

an �
�
n

N

�
= s2R: (171)

Prove or disprove: X
n=1

1

an= s: (172)

What if s=+1?
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