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1. Snake Algorithm and Level Set Method

References.

� Kass, M., Witkin, A, and Terzopoulos, D., Snakes: Active Contour Models , Int. J. of Comp. Vision 1, 321 -
331, 1988.

� Osher, Stanley and Fedkiw, Ronald, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical
Sciences 153, Springer 2003. Chapter 12.

� Demo: http://users.ecs.soton.ac.uk/msn/book/new_demo/Snakes/.

1.1. Snake (Active contour)

1.1.1. The e�ect of minimizing arc length

Theorem 1. Let D�R2 be compact, convex and with C1 boundary. Let L be a closed curve enclosing
D. Then

length(L)> length(@D): (1)

Proof. Since D is convex, if we let P = fx0; :::; xn = x0g be a partition of @D, then connecting
x0¡x1¡ ��� ¡xn gives us a convex polygon DP inscribed in D. We have seen in previous lectures
that

lim
d(P )¡!0

length(@DP)= length(@D): (2)

Together with the fact that DP �D, we see that it su�ces to prove (1) when D is a convex polygon.
The proof involves some technicality but is trivial at an informal level. Therefore we simply illustrate
the idea as follows,

L D

Replace this by this.

Figure 1. L can be shortened if it is di�erent from @D
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and leave the details as an exercise. �

Exercise 1. Let D�R2 be compact and convex. Let x02 @D. Prove: There is a unit vector n such that

D�fx 2R2j (x¡x0) �n6 0g: (3)

Then use this to prove Theorem 1 directly. (Hint:1 )

Corollary 2. Let D�R2 be compact and with C1 boundary. Let L be a closed curve enclosing D
such that length(L) is the smallest among all such curves. Then

L= @(conv(D)) (4)

where

conv(D)=\E2WE; W := fE �R2jD�E;E convexg (5)

is the convex hull of D, that is the smallest convex set containing D.

1.1.2. The idea of snake

An N �N digital grey-scale image can be identi�ed as a function F from f(m;n)jm;n=1; 2; :::;
N g to f0; 1; 2; :::; 255g in the sense that F (m; n) represents the grey-scale value of the image at
position (m;n). Now if we �normalize� everything, we can represent the image by a function de�ned
in [0; 1]2 and taking values in [0; 1]:

f
�
m
N
;
n
N

�
:=

1
256

F (m;n): (6)

When N is large enough, we can treat f simply as from [0; 1]2 7! [0; 1].

Images as functions.

Let u0(x; y): [0; 1]2 7!R be the image. Let x: [0; 1] 7!R2 be a parametrized curve. We minimize

I(x) :=�

Z
0

1

kx0(s)k2 ds+ �

Z
0

1

kx00(s)k2 ds¡�
Z
0

1

kru0(x(s))k2 ds: (7)

where �; �; � are positive parameters that need to be adjusted for di�erent images. The goal is to
�nd appropriate �; �; � such that the minimizer is the boundary of regions of interest, such as a
human �gure.

Notation 3. Here we use �s� instead of �t� because in the study of active snakes, �t� is reserved for
time. Note that the s here in general is not the arc length parameter.

Exercise 2. Explain the purpose of each term in the �energy functional� of the snake. In particular,

1. If there is y02L\Dc, then there is x02 @D such that kx0¡ y0k= dist(y0; @D)> 0. Now take n= y0¡x0
ky0¡x0k

and show
that D�fx2R2j (x¡x0) �n60g.
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A functional is a function of functions. For example, integration over a given interval [a; b] is
a functional whose �variables� are all integrable function on [a; b]:

I(f) :=

Z
a

b

f(x) dx: (8)

Just like the derivative of a function at a given point x0 is a linear function, the �functional
derivative� of a functional at a given function f0(x) is also a linear functional, de�ned through

I(f0+ �f)= I(f0)+ [(DI)(f0)](�f)+ o(�f): (9)

(Review 217 lecture notes on di�erentials if you �nd (9) hard to understand.) We will not explain
the meaning of o(�f) here since that can only be done after the introduction of function spaces �
vector spaces where each �vector� is a function.

Now for the functional de�ned in (8), we have

I(f0+ �f)=

Z
a

b

f0(x) dx+

Z
a

b

�f(x) dx=) (DI)(f0)=

Z
a

b

�dx= I: (10)

Exercise 3. In light of the fact that I(f) is linear, why is (DI)(f0)= I not surprising?

Functionals like (8) is a bit boring. Things get more interesting when we consider functionals
that are nonlinear and involve derivatives. For example

U(f) :=
1
2

Z
a

b

(f 0(x))2dx (11)

where the domain is ff 2C1[a; b]; f(a)= f(b)=0g. Now, to make sure f0+ �f still belongs to this
set, we need to require �f =0 at x= a; b.

Exercise 4. Prove that

U(f0+ �f)=U(f0)¡
Z
a

b

f0
00(x) �f(x) dx+

Z
a

b

(�f 0(x))2 dx (12)

and argue formally that

[(DU )(f0)](v(x))=¡
Z
a

b

f0
00(x) v(x) dx: (13)

that is [(DU )(f0)]=¡
R
a

b
f0
00(x) � dx.

The study of optimization problems for functionals is called �Calculus of Variations�. It turns
out that, parallel to the theory of optimization of functions, the optimal solution for problems
of Calculus of variations is also characterized by the vanishing of the derivative � the functional
derivative.

Exercise 5. Argue formally that the solution to min U(f) over ff 2C1[a; b]; f(a) = f(b) = 0g is f =0. Then
prove it rigorously.

Functional, Functional derivatives, and Calculus of Variations

1.2. Level set formulation and curvature �ow
In the level set formulation, curves and surfaces are represented as the zero level set of functions.
In the following we focus on the case of curves in the plane. More speci�cally, when considering the
closed curve

x(s): [a; b] 7!R2; x(a)=x(b); (14)
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we �nd a function �(x; t):R2�R 7!R such that

x([a; b]; t)= f(x; t)j �(x; t)= 0g: (15)

Such � is called a �level set function�.

Exercise 6. Part of the information in the curves x(s; t) is lost when using the level set representation. Which
part? (Hint:2 )

Lemma 4. Let x(t): [a; b] 7!RN be a curve with level set function �. Let v(x; t):RN �R 7!RN be
C1. Then

x(t) satis�es x_ (t)= v(x(t); t)() @�
@t

+ v � r�=0: (16)

From this we see that the trace the movement of a curve in the plane, it su�ces to solve a partial
di�erential equation.

It turns out that, numerically solving the ODE system x_ (s; t) = v(x(s; t); t) is usually not a
good idea � for example, if we try to trace the trajectory of a collection of points fx(sn; t)gn=1N ,
then we need to deal with issues such as the crossing of discretized paths. On the other hand,
there are many e�cient and stable methods to solve the PDE @�

@t
+v �r�=0. More importantly,

solving the ODE system preserves the information of the parametrization of the curve at every
time t, while such information often is of no value to us.

Why do we do this? Aren't ODEs simpler than PDEs?

Exercise 7. Let x(t): [a; b] 7!R2 be C1 for each t and evolves according to

x_ (s; t)= v(x(s; t); t): (17)

Here �dot� denotes time derivative, that is x_ (s; t)= @x

@t
. Let the velocity �eld satisfy @x

@s
(s; t) kv(x(t)). Prove that

the trace of x(t) does not change with time. Think: What changed? (Hint: 3 )

Exercise 8. Let x(t): [a; b] 7!R2 be C1 for each t and evolves according to

x_ (s; t)= v(x(s; t); t); x(s; 0)=x0(s); (18)

Let vn(x; t) = v � n be the normal velocity where n(x(s; t); t) is the unit normal vector to the curve at x(s; t).
Prove that the traces of

y_ (s; t)= v(x(s; t); t)n(x(s; t); t); y(s; 0)=x0(s) (19)

coincide with that of x(s; t) at every time t.

The combination the idea of active snake and level set formulation leads to the idea of curvature
�ow, where the velocity v=c �n where � is the curvature of the curve and n the unit normal vector.
One realization of this idea is the following equation:4

@�
@t

= g(ru0)� jr�j+rg(ru0) � r�: (20)

Again, although (20) looks formidable, there are e�cient numerical methods for this type of equa-
tions.

2. The parametrization. In other words, from � we can only recover the trace of the curve. (recall the di�erence between
a curve and its trace!)

3. The parametrization.

4. Zhao, H.-K.,Chan, T.,Merriman,B., andOsher, S., AVariational Level Set Approach toMultiphaseMotion, J. Comput.
Phys., 127, 179 - 195, 1996.
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2. Flying in the Wind

References.

� (Veltkamp-Klamkin) Veltkamp, G. W. and Klamkin, M. S., Flight in An Irrotational Wind Field (M. S.
Klamkin), SIAM Rev., 4 (2), 155 - 156.

If an aircraft travels at a constant air speed, and traverses a closed curve in a
horizontal place (with respect to the ground), the time taken is always less when
there is no wind, than when there is any constant wind. Show that this result is also
valid for any irrotational wind �eld and any closed curve.

Let S be the closed curve that is the trajectory of the aircraft. Let T =
�
Tx
Ty

�
be the unit

tangent vector pointing in the direction of the movement of the aircraft. Let N = T? :=
�
¡Ty
Tx

�
be the induced normal vector. Note that this is the opposite of the outer normal vector.

We make the assumption that the engine of the aircraft works at a constant power, that is if
there is no wind, the velocity would be v such that kvk=V is a constant.

Finally, to simplify presentation, we normalize V =1. In the following we also assume kwk<1,
that is the wind speed is less than the aircraft speed when there is no wind.

Setting up the Problem

2.1. No wind, constant wind

� No wind.

When there is no wind, the aircraft obviously directs itself along T , that is its velocity
is v=T . Consequently the time is given by

T (Nowind)= lengthof S: (21)

� Constant wind

Now consider the case when the wind is a constant vector w. In this case the aircraft
must direct itself in a way that

v+w kT () v+w?N : (22)

Writing v= vTT + vNN and w=wTT +wNN , we have

vN =¡wN: (23)

Together with kvk=1 we have

vT =� 1¡wN2
p

: (24)

To make the travel time as short as possible, obviously v should chosen as

vT = 1¡wN2
p

: (25)
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Now if we parametrize S by its arc length, we would have

T (w)=

Z
S
(vT +wT)

¡1ds=

Z
S

ds

wT + 1¡wN2
p : (26)

Now denote w= wT
2 +wN

2
p

and notice that

1¡wN2 =(1¡w2)+wT
2 : (27)

This leads to

1

wT + 1¡wN2
p =

(1¡w2)+wT
2

q
¡wT

1¡w2 : (28)

Exercise 9. Prove that Z
S

wT ds=0: (29)

using the fact that w= grad f(x) where f(x)=w �x. (Hint:5 )

Now we see that, since 1¡w22 [0; 1],

T (w)=

Z
S

(1¡w2)+wT
2

q
1¡w2 ds>

Z
S
1 ds=T (Nowind): (30)

Exercise 10. Prove that the > in (30) can be replaced by >. (Hint:6 )

2.2. Irrotational wind

Now if we allow non-constant wind, it is obviously possible that the travel time is shorter than the
no wind case. For example, we can the wind to be w(x; y)=w(x; y)T (x; y) with w(x; y)> 0.

Exercise 11. Prove that for such w, there cannot hold

@w1
@y

=
@w2
@x

for all (x; y)2D (31)

where w1; w2 are the x; y components of w, that is w=
�
w1

w2

�
, and D is the region enclosed by S. (Hint:7 )

Inspired by this, we assume that the wind �eld is irrotational, that is w(x; y)=
�
w1
w2

�
satisfying

@w1
@y

=
@w2
@x

for all (x; y)2D: (32)

We present the two solutions from (Veltkamp-Klamkin) .

5. Parametrize S and then show that the integral equals f(x(b))¡ f(x(a)), but S is closed which means x(b) =x(a). Or
use Green's Theorem.

6. Use Cauchy's MVT to show that there must be a point on S such that T kw there.

7. Green's Theorem.
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Let

W :=wT + 1¡wN2
p

: (33)

Then direct calculation veri�es

1
W

=
1
2

�
W +

1
W

�
¡wT +

wT
2 +wN

2

2W
> 1¡wT : (34)

Now since the wind is irrotational, we haveZ
S
wT ds=

Z
S
w �dl=

Z
D

�
@w2
@x

¡ @w1
@y

�
d(x; y)= 0 (35)

and the conclusion immediately follows.

Solution by G. W. Veltkamp

Exercise 12. Verify (34).

Notice that

T (w)=

Z
S

1
(v+w) �T ds: (36)

Using Cauchy-Schwarz, we have�Z
S
(v+w) �T ds

�
T (w)>

�Z
S
1 � ds

�
2

(37)

which means

T (w)>
R
S
dsR

S
(v+w) �T ds

T (Nowind): (38)

Thus all we need is Z
S
(v+w) �T ds6

Z
S
ds: (39)

This is obvious.

Solution by M. S. Klamkin and D. J. Newman (Proposers of this problem)

Exercise 13. Prove (37). (Hint:8 )

Exercise 14. Finish the proof. (Hint:9 )

On the other hand the approach in the previous section, although still works, becomes quite
ugly compared to the above two beautiful solutions. In particular, although we still have

T (w)=

Z
S

(1¡w2)+wT
2

q
¡wT

1¡w2 ds>
Z
S
1 �ds¡

Z
S

wT
1¡w2 ds: (40)

8. 1= [(v+w) �T ]1/2 [(v+w) �T ]¡1/2.

9. Apply Green's Theorem to the integration of w. Then recall that we have assumed kvk=1.
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Application of Green's Theorem to the second term gives:Z
S

wT
1¡w2 ds =

Z
S

w

1¡kwk2 �T ds

=

Z
S

w1
1¡w12¡w22

dx+
w2

1¡w12¡w22
dy

=

Z
D

�
@
@y

�
w2

1¡w12¡w22

�
¡ @
@x

�
w1

1¡w12¡w22

��
d(x; y)

=

Z
D

2
�
w2
2 @w2
@y
¡w12

@w1
@x

�
(1¡w12¡w22)2

d(x; y)=/ 0: (41)

To make things work we observe that
R
S
wT ds=0. Therefore all we need to show is

1¡w2+wT
2

p
¡w2wT

1¡w2 =
1¡w2+wT

2
p

¡wT
1¡w2 +wT > 1: (42)

This is equivalent to

1¡w2+wT
2

p
¡w2wT > 1¡w2() 1¡w2+wT

2
p

+w2 (1¡wT)> 1: (43)

Now denote b := 1¡w2
p

, x :=wT . Then we need to show

f(x) := b2+ x2
p

¡ (1¡ b2)x¡ b2> 0 (44)

for all x2 [¡b; b] with b6 1.
Exercise 15. Prove that f 00(x)> 0 for all x2R.

From the formula of f(x) it is clear that we only need to consider x2 [0; b]. Taking derivative:

f 0(x)=
x

b2+ x2
p ¡ (1¡ b2): (45)

Setting f 0(x)= 0 we reach

x

b2+x2
p =(1¡ b2)=)x2=(1¡ b2)2 (b2+ x2)()x=� 1¡ b2

2¡ b2
p : (46)

Clearly we should pick 1¡ b2

2¡ b2
p .

When (1¡ b2)26 1/2 we have 1¡ b2

2¡ b2
p 6 b which means f

�
1¡ b2

2¡ b2
p

�
is the minimum. We calculate

f

�
1¡ b2

2¡ b2
p

�
=
b2
�
(2¡ b2)¡ 2¡ b2

p �
2¡ b2

p > 0: (47)

Thus we have f(x)> 0 when (1¡ b2)26 1/2.
When (1¡ b2)2> 1/2, it su�ces to show f(b)> 0, that is

2
p
¡ 1+ b2¡ b> 0: (48)

But

b2¡ b+ 2
p
¡ 1= (b¡ 1/2)2+ 2

p
¡ 5
4
> 2
p
¡ 5
4
> 0: (49)

Thus we have proved (44) from which (42) follows.

Problem 1. Study the same problem in R3 or RN.
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3. Continuum Mechanics

References.

� (Temam-Miranville) Temam, Roger and Miranville, Alain, Mathematical Modeling in Continuum
Mechanics , Cambridge University Press, 2001. Chapters 1 � 6.

3.1. Kinematics

3.1.1. Basic concepts and relations

Kinematics studies motion of objects without considering the cause of motion. For example,
consider the motion of a rigid rod with ends x1(t) and x2(t). Then its kinematics is governed by
the fact that kx1(t)¡x2(t)k= kx1(0)¡x2(0)k for all t. This holds no matter what the cause of
the motion is.

What is Kinematics

Exercise 16. Prove that

[v1(t)¡v2(t)] � [x1(t)¡x2(t)]= 0 (50)

for all t. (Hint:10 )

We consider a collection of material bodies occupying a domain (a connect open set) of the
space R3. Then if it is moving, the domain will change with time. Thus we denote it by 
t. In
many situations, there is a natural �starting time� t0, which can often be set as 0. If we take the
coordinate fram at t= 0 as our reference frame, then the movement of all the material bodies can
be represented by a �deformation map�:

�:
0 7!R3 (51)

with the position at time t of the material body taking position a at t = 0 given by �(a; t). We
make the following assumptions:

� � is one-to-one;

� � is as smooth as we need;

� detr�> 0 for every a2
0 and every t > 0.

Exercise 17. Find a f :R2 7!R2 such that detrf > 0 everywhere but f is not one-to-one. (Hint:11 )

Definition 5. (Displacement) The function u: 
0 7!R3 de�ned by

u(a; t)=�(a; t)¡a (52)

is called the �displacement map.�.

Definition 6. (Trajectory) For each �xed a2
0, the curve

t 7!�(a; t) (53)

is called the �trajectory� of the particle starting at a.

10. Di�erentiate kx1(t)¡x2(t)k2.
11. Identify R2 with C. Consider z 7! zn for n=2.
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Now if we following this particular particle, then clearly its velocity at time t is given by @�

@t
(a; t).

However, in the context of continuum mechanics, due to the large number of particles we would like
to avoid tracing every particle. Therefore we would like to write the velocity using the coordinate
system at time t, that is we write v(x; t) instead of v(a; t). Thus we have the relation

v(�(a; t); t)=
@�(a; t)

@t
: (54)

Now we calculate acceleration:

@2�(a; t)

@t2
=
d
dt
[v(�(a; t); t)] =

@v
@t

+(v � r)v: (55)

Exercise 18. Where are the functions on the RHS evaluated at? (Hint:12 )

3.1.2. Eulerian and Lagrangian

In (55) we have seen that, for the same quantity �acceleration at time t of the particle originally at

a� can be represented in two ways: @
2�(a; t)

@t2
, @v
@t
+(v �r)v. The di�erence between these two formulas

is that, the former uses the information of the particle trajectory while the latter does not.

Definition 7. A function associated with a particle M can be written as g(a; t) or h(x; t). We call
the former Lagrangian representation and the latter Eulerian representation of the same function.

Definition 8. (Material Derivative) The �material derivative� Dt is de�ned as

Dtf :=
@f
@t
+(v � r)f: (56)

Thus we can write the accerlation as Dtv. Note that Dt can be calculated without tracing
particles.

Exercise 19. Let h(x; t) and g(a; t) be the Eulerian and Lagrangian representations of the same quantity related
to a certain property of the particles. Prove that

@g
@t
(a; t)=

�
@h
@t

+(v � r)h
�
(x; t): (57)

where x=�(a; t).

3.1.3. Study aggregates of particles

We consider the movement of particles governed by �(a; t): 
0 7! 
t, with induced velocity �eld
v(x; t). Let some property of the particles be represented as

K(t) :=

Z

t

C(x; t) dx: (58)

We would like to derive a di�erential equation for K(t).

Lemma 9. Let A(t):R 7!RN�N be nonsingular for every t. Then

d
dt
(detA(t))= [detA(t)] � tr

�
dA(t)
dt

�A(t)¡1
�
: (59)

Proof. Wlog we calculate the derivative at t=0. Denote A0=A(0). Then we have

detA(t)¡detA(0)= (detA0)
�
det

¡
A(t)A0

¡1�¡ 1�: (60)

12. (�(a; t); t).
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Thus it su�ces to prove the special case A0= I , which reduces to

lim
t!0

det (I +B(t))¡ 1
t

= tr(B 0(0))= lim
t¡!0

tr
�
B(t)
t

�
(61)

where B(0)= 0. Recalling the calculation formula for determinant:

detC =
X
�

(¡1)�c�(1)����(N) (62)

where the sum goes over all permutations of f1; 2; :::; N g, we see that

det (I +B(t))= 1���1+
X
i=1

N

bii(t) 1���1+O() (63)

�

Proposition 10. We have

K 0(t)=

Z

t

@C
@t

dx+

Z

t

div (Cv) dx=
Z

t

@C
@t

dx+

Z
@
t

C (v �n) dS: (64)

Proof. Exercise. (Hint:13 ) �

By Proposition 10 we have the following relation representing mass conservation:

0=M 0(t)=

Z

t

@�
@t
+div (�v) dx: (65)

Since this holds for every possible 
t, we obtain the equation for mass conservation:

@�
@t
+div (� v)= 0: (66)

In many situations �(x; t) = �0 is a constant. Then the conservation of mass reduces to the
incompressibility condition divv=0.

Conservation of mass

Exercise 20. If

K(t)=

Z

t

C(x; t) �(x; t) dx; (67)
then

K 0(t)=

Z



(DtC) �dx (68)

where Dt= @t+ v � r is the material derivative. (Hint:14 )

Exercise 21. Apply Proposition 10 and Exercise 20 to the evolution of energy, momentum, and angular
momentum:

1

2

Z

t

� kvk2dx; 1

2

Z

t

� v dx;

Z

t

� (x� v) dx: (69)

3.2. Dynamics

In contrast to Kinematics, dynamics takes into account the causes of motion � the forces.

What is Dynamics

13. Apply change of variables to reduce the integral to an integral on 
0. Note that we have assumed det (ra�)> 0.
14. Use Proposition 10 then use conservation of mass.

12 Math 317 Week 10: Vector Analysis in Science and Engineering



3.2.1. Internal force and stress tensor
We consider two small material bodies sharing part of the boundaries (which is a piece of surface).
The assumption now is that the force caused by their interaction depends only on the location x
and the normal n of the separating surface. We denote it by T (x;n): 
t�S2 7!R3.

Now we study the properties of T . It turns out that T enjoys many symmetries. First, from
Newton's 3rd law, we have

T (x;n)=¡T (x;¡n): (70)
Furthermore,

Proposition 11. If T is continuous as a function of x for each �xed n, then T is linear in n. Thus
there is a matrix function �(x) such that

T (x;n)=�(x) �n: (71)

� is often called the �stress tensor�.

Proof. Take anyn2S2. Wlog let nx; ny; nz>0. We consider the tetrahedron obtained from cutting
fx; y; z > 0g by the plane fx 2R3jn � (x ¡ hn) = 0g which has normal n and is distance h away
from the origin.

Then since its acceleration cannot be in�nity, the boundary force must sum up to O(h). Simple
calculation gives

T (x; e1)nx+T (x;e2)ny+T (x; e3)nz=T (x;n) (72)

and the conclusion follows. �

Exercise 22. Prove that � is symmetric. (Hint:15 )

3.2.2. Equations of dynamics
Now following basic laws of Newtonian mechanics, we have the equation for conservation of
momentum

�Dtv=div (�)+ f : (74)

Here f represents external force, while the divergence of the tensor � is de�ned as

div (�)= @j�ij: (75)

Note that Einstein's summation notation is used here.

If we make the assumption that there is no �shear� force, that is T (x;n) kn for all n, then it
can be proved that there is a function p(x) such that

�(x)= p(x) I (76)

whre I is the identity matrix.

Pressure

Exercise 23. Prove that

� �n kn=)�= p I; (Hint:16 )

� div (p(x) I)=rp(x).

15. Consider angular momentum: By Gauss's Theorem,

0=

Z
@


x� (�(x) �n) dS=
Z


�ijk [�kj+xj �kl;l] dx: (73)

Now �shrink� 
 to origin.

16. Assume the contrary: �n1= a1n1, �n2= a2n2 with a1=/ a2. Consider linear combinations of n1;n2.
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3.2.3. Stress-strain (constitutive) relations
The equation of dynamics (together with conservation of mass) cannot really solved because there
are many more unknowns than equations. To make them solvable, we need to introduce the so-
called stress-strain relations, relating the motion of particles with the stress tensor.

A material is called �solid� if the stress is produced by the deformation of the material. To
quantify this we introduce the right Cauchy-Green tensor

C := (ra�)
T (ra�) (77)

and the deformation tensor (Cauchy-Lagrange tensor)

X :=
1
2
(C ¡ I): (78)

Thus the material is solid if we can safely assume

�(a; t)= f(X): (79)

If we denote U(a; t)=�(a; t)¡a, then when the deformation is small, we have

X� 1
2
(raU +raU

T): (80)

Thus �(a; t) = f(raU +raU
T). Note that it is wrong to use f(raU) as this formula does not

have the appropriate symmetry, such as frame-independence.

Solids

Exercise 24. Let a(s): s2 [c; d] be a curve in 
0. It is mapped to another curve �(a(s); t) in 
t. Prove that

length(�(a(s)))=
Z
c

d

a 0(s) � [C(a(s); t)a 0(s)]
p

ds: (81)

Thus C characterizes the stretching of the line elements.

Exercise 25. Prove
@X
@t

=
1
2
(rv+rvT): (82)

Note that the RHS is Eulerian.

A material is called ��uid� if the stress is produced by the rate of deformation. Therefore for
�uids we model

�(x; t)= f(D) (83)

where D=
1

2
(rv+rvT).

A �uid is called �Newtonian� if f is linear. In this case it can be shown (using thermo-dynamics)
that

�= �D+� (divv) I ¡ p I (84)

which leads to the Navier-Stokes equations:

�Dtv=¡rp+ �4u+(�+ �)r(divv): (85)

Fluids

Remark 12. From the above we see that it is natural to study solids in a Lagrangian formulation
while �uids in a Eulerian formulation.
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4. Advanced Topics, Notes, and Comments

4.1. Di�erentiation inside integration
In many situations we need to calculate

d
dt

Z
D
f(x; t) dx (86)

whereD�RN is bounded or unbounded. In the framework of Riemann integration we have restrict
ourselves to the case where D is bounded.

Theorem 13. Let D�RN be a compact set. Let f(x; t):D� (a; b) be C1. Denote '(x; t) := @f(x; t)

@t
.

Let t02 (a; b). Then
F (t) :=

Z
D
f(x; t) dx (87)

is di�erentiable at t= t0 and furthermore

F 0(t0)=

Z
D
'(x; t0) dx: (88)

Proof. We calculate

F (t)¡F (t0)
t¡ t0

¡
Z
D
'(x; t0) dx=

Z
D

�
f(x; t)¡ f(x; t0)

t¡ t0
¡ '(x; t0)

�
dx: (89)

Now since '(x; t) is continuous on D � (a; b), there is � > 0 such that '(x; t) is continuous on
D � [t0 ¡ �0; t0 + �0]. Since D is compact, by Heine-Borel it is closed and bounded. Therefore
D� [t0¡ �0; t0+ �0] is also compact. Consequently '(x; t) is uniformly continuous on D� [t0¡ �;
t0+ �].

Now for any "> 0, take � > 0 such that

8(x1; t1); (x2; t2) 2 D � [t0 ¡ �0; t0 + �0]; k(x1; t1) ¡ (x2; t2)k < � =) j'(x1; t1) ¡ '(x2;

t2)j<": (90)

We have by MVT, for any jt¡ t0j<�,

8x2D;
����f(x; t)¡ f(x; t0)

t¡ t0
¡ '(x; t0)

����<": (91)

Thus
f(x; t)¡ f(x; t0)

t¡ t0
¡ '(x; t0)¡! 0 (92)

uniformly and consequently

F (t)¡F (t0)
t¡ t0

¡
Z
D
'(x; t0) dx¡! 0: (93)

Thus ends the proof. �

4.2. Electric �eld of a distribution of electric charges
LetD�R3 be compact and @D consists of �nitely many pieces of C1 surfaces. Consider a continuous
distribution of electric charges: �:D 7!R+[f0g. Then the electric potential u(x) is given by

u(x)=

Z
D

�(y)

kx¡ yk dy: (94)
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Note that u(x) is de�ned on the whole R3. Recall that the electric �eld E(x) is de�ned as

E(x) :=¡gradu(x): (95)

Theorem 14. Assume that � is C2 and supp ��Do, where the �support� supp � := fxj �(x)> 0g.
Then we have

divE=4� � (96)

satis�ed at all x2R3.

Proof. For simplicity of presentation we prove (96) at x=0. Since supp � is compact, dist(supp �;
@D)> 0. Therefore for kxk<� we can write

u(x)=

Z
D

�(x+z)

kzk dz: (97)

Now as � is assumed to be C2, u(x) as de�ned through (97) is also C2 due to Theorem 13. Therefore
we have

divE=div (¡gradu)=
Z
D

divx (¡gradx �(x+z))
kzk dz: (98)

Here divx; gradx indicate that the di�erentiations are with respect to x. By chain rule we see that

divx (¡gradx �(x+z))=divz (¡gradz �(x+ z)): (99)

Thus we have

divEjx=0=
Z
D

div (¡grad �(z))
kzk dz: (100)

Now denote

D" :=D\fkxk>"g: (101)

Invoking spherical coordinates, we can prove thatZ
D

div (¡grad �(z))
kzk dz= lim

"!0+

Z
D"

div (¡grad �(z))
kzk dz: (102)

Now apply Gauss's Theorem to obtain (note that grad �=0 along @D)Z
D"

div (¡grad �(z))
kzk dz =

Z
D"

�
div

�
¡grad �
kzk

�
+ grad � � grad

�
1
kzk

��
dz

=

Z
@D"

¡grad �(z)
kzk �

�
¡ z

kzk

�
dS+

Z
D"

div
�
� grad

�
1

kzk

��
dz

¡
Z
D"

�div
�
grad 1

kzk

�
dz

=

Z
@D"

grad �(z)
kzk � z

kzk dS+
Z
@D"

�(z) grad
�

1
kzk

�
�n dS

= "¡2
Z
kzk="

(grad �(z)) �z dS+
Z
kzk="

�(z)
1

kzk2 dS

= "¡2
Z
kzk="

(grad �(z)) �z dS+ "¡2
Z
kzk="

�(z) dS: (103)

Taking "¡! 0+ we have Z
D

div (¡grad �(z))
kzk dz=4� �(0): (104)

Thus ends the proof. �
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Exercise 26. Prove (102).

Exercise 27. Prove div
�
grad 1

kzk

�
=0 for every z=/ 0.

Exercise 28. Prove that

lim
"¡!0+

"¡2
Z
kzk="

(grad �(z)) � z dS=0; lim
"¡!0+

"¡2
Z
kzk="

�(z) dS=4� �(0): (105)

Exercise 29. Prove (96) at general x.

Exercise 30. Does the equation still hold if we drop the boundedness assumption on D?

Remark 15. (96) still holds even when � is not smooth. The proof is possible in the framework
of Riemann integration but much easier in the framework of Lebesgue integration.

Remark 16. From this we can quickly obtain two of the four equations in the system of Maxwell's
equations:

divE=4� �; divB=0: (106)

Exercise 31. Assume the Maxwell's equations:

divE =4� �; divB =0; curlE =¡1
c

@B

@t
; curlB =

1

c

@E

@t
+
4�

c
J : (107)

Prove the following.
@�
@t
=¡div J ; (108)

@2E

@t2
= c24E; @2B

@t2
= c24B: (109)

4.3. Some technical topics in continuum mechanics

4.3.1. Rigid motion

Let v:R3 7!R3 be a velocity �eld that induces a rigid motion, that is if for any 
0�R3,

@�(a; t)

@t
=v(�(a; t); t); a2
0; t > 0 (110)

with �(a; 0)=a for all a2
0, then for any a1;a22
0,

ka1¡a2k= k�(a1; t)¡�(a2; t)k (111)

for all t > 0.

Exercise 32. Prove that v induce a rigid motion if and only if

8x; y 2R3; (x¡ y) � [v(x; t)¡ v(y ; t)]= 0 (112)

Proposition 17. (Structure of Rigid Motion) v induced a rigid motion if and only if there
are functions !1(t); !2(t); !3(t) and b(t) such that

v(x; t)=B(t)x+ b(t) (113)
Note that v
is linear in

x!
where B(t) :=

0@ 0 ¡!3 !2
!3 0 ¡!1
¡!2 !1 0

1A.
Exercise 33. Prove that B(t)x=! �x where ! :=

0@ !1
!2
!3

1A.

Proof. That any v given by (113) induces a rigid motion is trivial to prove and left as exercise.
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Also notice that we could safely ignor the t dependence. Thus all we need to prove is that

8x; y ; (x¡ y) � [v(x)¡ v(y)] = 0=)v(x; t)=Bx+ b: (114)

with B taking the above particular form. We further simplify by taking u(x) := v(x)¡v(0). Then
we have

8x; x �u(x)= 0 and 8x; y ; (x¡ y) � [u(x)¡u(y)] = 0 (115)

Now taking y= e1;e2;e3 where e1=

0@ 1
0
0

1A;e2=
0@ 0
1
0

1A; e3=
0@ 0
0
1

1A, we have
u(x) �ei=¡u(ei) �x: (116)

This clearly shows u(x) is linear and thus equals Bx for some matrix B.

Now from x � (Bx)= 0 for all x we conclude that B must take the form

0@ 0 ¡!3 !2
!3 0 ¡!1
¡!2 !1 0

1A. �

4.3.2. Shock and Rankine-Hugoniot conditions

In the study of shocks, we need to derive equations for the evolution of
R

t
C(x; t) dx where C is

smooth everywhere in 
t except along a surface �t dividing 
t into two parts. By application of
Gauss's Theorem in the two parts separately, we have

d
dt

Z

t

C dx=

Z

t

�
@C
@t

+div (Cv)
�
dx+

Z
�t

[CV ] �n dS (117)

whereV :=v¡w withw the velocity of the surface�t, and [�] denotes the �jump� across the surface.
Now if we assume the evolution of C satis�es

d
dt

Z

t

C dx=

Z


f dx (118)

for all possible 
t's, then we conclude

[CV ] �n=0 (119)

everywhere along �t. (119) is called Rankine-Hugoniot condition for shocks. This condition is usally
used to determine the movement of �t.

Example 18. (Traffic Flow) A simplist, qualitative model for tra�c �ow is obtained by con-
sidering the conservation of mass (numbers of cars):

d
dt

Z
a(t)

b(t)

�(x; t) dx=0 (120)

where a(t); b(t) are the positions of the �rst and the last of the group of cars under consideration.
Now consider the case of tra�c jam. In this case there is a position x0(t) such that �(x; t)� �R

for x > x0(t) and �(x; t) � �L for x < x0(t) with �R > �L. The Rankine-Hugoniot condition (119)
now gives

�R [vR¡x00 (t)] = �L[vL¡ x00 (t)]=)x0
0 (t)=

�R vR¡ �L vL
�R¡ �L

: (121)

Once we assume a �constitutive relation� between � and v, this would give us an ODE for x00 (t)
which can then be solved to obtain x0(t) for all t.
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5. More Exercises and Problems
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