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1. Surfaces in R
3

In this and the following sections we restrict ourselves to surfaces in R
3 to avoid cumbersome

notations and some technical difficulties.

1.1. Parametrization of surfaces

Definition 1. (C1 Surface) Let D ⊆R
2 be compact and such that ∂D consists of finitely many

segments of C1 curves. Assume that

r:G 7→R
3, r(u, v) :=





x(u, v)
y(u, v)
z(u, v)



 (1)

where G⊃D is open. Let r be C1 on G, and one-to-one in Do. Furthermore assume
∣

∣

∣

∂r

∂u
× ∂r

∂v

∣

∣

∣=/ 0

in Do. Then we say S := r(D) is a (piece of) C1 surface in R3.

Remark 2. Notice that r does not need to be one-to-one along the boundary ∂D. This is in contrast
with the definitions given in Differential Geometry books. The reason is that we are focusing on
the integration of continuous functions on such surfaces. In this context r being not one-to-one on
∂D does no harm. This is no longer true when we consider other properties of the surfaces.

Exercise 1. Let µ denote the Jordan measure in R
2. Prove that µ(∂D) = 0. (Hint:1 )

Remark 3. We will study integration on surfaces that can be written as a union of finitely many
pieces of C1 surfaces. We will simply call such surfaces “C1 surfaces”. In the following we always
assume the surfaces under consideration are C1.

Remark 4. We restrict ourselves to C1 surfaces as theory about surfaces that are not C1 can be
very involved. Such surfaces are studied in Geometric Measure Theory.

Notation 5. In the following, when no confusion shall arise, we will use ru, rv to denote
∂r

∂u
,
∂r

∂v
.

Remark 6. Recall that ru,rv are tangent vectors to the surface, and thus belong to the plane that
is tangent to the surface at that point. The condition |ru× rv |=/ 0 guarantees that the two vectors
are linearly independent and span the plane, which is consequently unique.

Exercise 2. Prove that ru× rv is perpendicular to the surface. (Hint:2 )

Exercise 3. Write down the equation for the tangent plane at some x0 on the surface. (Hint:3 )

Example 7. The sphere

r(φ, ψ) =





R cosφ cosψ
R sinφ cosψ
R sinψ



, D=
{

(φ, ψ)| 0 6 φ6 2π,−π
2

6 ψ6
π

2

}

(2)

1. D is Jordan measurable ⇐⇒ µ(∂D) = 0.

2. That is ru× rv is perpendicular to both ru,rv.

3. A plane with normal vector N and passes x0 is given by N · (x−x0) =0.
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is one piece of C1-surface.

Another parametrization of the sphere is

r(φ, ψ) =





R cosφ sinψ
R sinφ sinψ
R cosψ



, D= {(φ, ψ)| 0 6 φ6 2π, 0 6 ψ6π} (3)

Note that in the first parametrization ψ represents the (signed) angle between the vector from the
origin to the point and the x-y plane, while in the second parametrization it represents the angle
between the same vector and the positive z-axis.

Exercise 4. Suppose you have obtained some formula in spherical coordinates (3) and then decide to switch to

(2). Is it possible to “translate” the formula without re-deriving it? (Hint:4 )

Exercise 5. Try to find r for other everyday surfaces, such as the cylinder and the torus.

Lemma 8. Let S be a C1 surface. Then for any δ > 0 there is n∈N and S1, ..., Sn, all C
1 surfaces,

such that Si
o∩Sjo= ∅, and furthermore d(Si)<δ. Here

d(E) := sup
x,y∈E

‖x− y‖. (4)

Exercise 6. Prove the above lemma. (Hint:5 )

1.2. Area of surfaces

1.2.1. Area of polyhedron

Definition 9. (Polyhedron) A polyhedron is a bounded set such that its boundary consists of
finitely many polygons.

It is clear that the boundary (surface) of a polyhedron consists of finitely many C1 surfaces,
each given by a linear (more precisely, affine) mapping.

To study the area of polygons in R
3, we need some vector algebra. Recall that for u =





u1

u2

u3



,

v =





v1
v2
v3



∈R
3, we can define the inner and cross-products as:

u · v :=u1 v1 + u2 v2 +u3 v3; u× v :=





u2 v3− u3 v2
u3 v1− u1 v3
u1 v2− u2 v1



. (5)

Exercise 7. Let u,v ∈R
3. Then

u ×v =−v ×u; (6)

Further if a, b, c, d∈R, then

(au + bv)× (cu + d v) = (a d− b c) (u × v). (7)

4. Find the relation between the ψ’s in the two formulas.

5. When S is one piece, simply divide D. Then use the fact that r is C1 which means ‖r(u)−r(v)‖6M ‖u−v‖ for some

M > 0.
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Exercise 8. Let u,v ∈R
3. Then

(u · v)2 + ‖u × v‖2 = ‖u‖2 ‖v‖2. (8)

Lemma 10. Let S be a triangle in R3 with vertices x1,x2,x3. Denote

u :=x3−x1, v :=x2−x1. (9)

Then the area of S is given by
1

2
‖u×v‖.

Proof. Wlog we can assume x1 = 0. Recalling that

u · v
‖u ·v‖ = cos θ (10)

where θ is the angle between u, v, by (8) we have

‖u× v‖= ‖u‖‖v‖ |sin (θ)|. (11)

Thus the area of the triangle formed by 0,u,v is given by
1

2
‖u×v‖. �

Corollary 11. The area of the triangle in R2 with vertices (x1, y1), (x2, y2), (x3, y3) is given by

|(x2−x1) (y3− y1)− (x3− x1) (y2− y1)|. (12)

Exercise 9. Prove Corollary 11. (Hint:6 )

Lemma 12. Let S= r(D) be a piece of C1 surface given by a linear function

r:G 7→R3, r(u, v) :=





x(u, v)
y(u, v)
z(u, v)



. (13)

Then the surface area of S is

A(S) = µ(D) ‖ru× rv‖. (14)

Here µ(D) is the (R2) Jordan measure of D.

Proof. Since r is linear, we denote

r(u, v) =ua+ v b + c (15)

where a, b, c∈R3. Without loss of generality, we can assume c= 0.

We first prove the lemma for the case where D is a triangle with vertices (0,0), (u1, v1), (u2, v2).
Thus we have

A(S) =
1

2
‖(u1 a+ v1 b)× (u2 a+ v2 b)‖

=
1
2
‖(u1 v2− v1u2) (a× b)‖

=
|u1 v2−u2 v1|

2
‖a× b‖= µ(D) ‖ru× rv‖. (16)

6. Consider the triangle with vertices (xi, yi, 0).
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It is clear now that (14) holds when D is a polygon (thus S is also a polygon).

Finally we consider the case D being an arbitrary Jordan measurable set. By properties of such
sets we know there are polygons Un, Vn such that Vn⊆D⊆Un and furthermore

lim
n→∞

µ(Vn)= lim
n→∞

µ(Un) = µ(D). (17)

On the other hand, r(Vn)⊆S⊆r(Un) and both r(Vn),r(Un) are polygons too. Therefore S is Jordan
measurable with

A(S)= µ(S)= lim
n→∞

µ(r(Vn)) = lim
n→∞

µ(r(Un)) = µ(D) ‖ru× rv‖. (18)

Thus ends the proof. �

Exercise 10. Prove the formula directly when D is a general triangle.

When a surface S is contained in a plane, there is already a natural way of defining its area
through theR2 Jordan measure – we identify this plane withR

2 and then study its area. Therefore
we try to make this our starting point of defining area for more complicated surfaces.

In many books, Definition 13 below is used as the starting point. In that case the above
calculation should still be carried out to make sure that this definition does not contradict well-
established facts such as the area of a surface contained in the plane should be the same as its R2

Jordan measure.

What is the above about.

1.2.2. Area of C1 surfaces

We have unambiguously defined the surface area of polyhedra in R
3 as well as the area for those sets

that are contained in a plane. Surprisingly, it turns out that defining area of general surfaces through
approximation by polyhedra is not straightforward.7 For now we will brush the subtlety under the
carpet and define area of C1 surfaces through approximating tangent triangles. The derivation is a
bit technical and relegated to §4.3, here we simply state the conclusion in the form of a definition.

Definition 13. Let S be a C1 surface given by r: D 7→ R3. We define its surface area to be
∫

D
‖ru× rv‖ d(u, v).

Remark 14. In light of Theorem 45, the above definition makes sense. However note that it is an
awkward definition compared to arc length since the parametrization is explicitly involved in the
definition. Such issues will be settled in Geometric Measure Theory.

Corollary 15. Assume the surface is given by z= φ(x, y) on D⊂R
2. Then

S=

∫

D

1 + φx
2 + φy

2
√

d(x, y). (19)

7. See §4.2.
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Exercise 11. Prove (19).

Example 16. Find the area of the part of z= x y that is inside x2 + y2 =1.

Solution. We calculate

S=

∫

x2+y261

1 + zx
2 + zy

2
√

d(x, y) =
2π
3

(

2 2
√

− 1
)

. (20)

Calculating ‖ru× rv‖ may be unpleasant due to the cross-product involved. It is possible to
avoid this and instead calculate three dot products.

Theorem 17. Let S be a C1 surface given by r:D 7→R
3. If we denote

E := ru · ru, F := ru · rv, G := rv · rv, (21)

then

S=

∫

D

EG−F 2
√

d(u, v). (22)

Exercise 12. Let x, y ∈R
3. Denote

E := x ·x, F := x · y , G := y · y. (23)

Then

‖x × y‖= EG−F 2
√

=

[

det

(

E F

F G

)]

1/2

. (24)

Why does EG−F 2 > 0?

Exercise 13. Let a, b, c, d∈R
3. Prove (a × b) · (c ×d) = det

(

a · c a · d

b · c b · d

)

.

The bilinear form

I(x, y) :=xT
(

E F

F G

)

y (25)

is called the “first fundamental form” in the theory of surfaces.

Exercise 14. Let S be a C1 surface given by r:D 7→R
3 and let E := ru · ru, F := ru · rv, G := rv · rv. Let

x(t) := (u(t), v(t))⊂D, t∈ [a, b] be a C1 curve in D. Prove that r(u(t), v(t)) is a C1 curve in S, and furthermore
its arc length is given by

∫

a

b

I(x ′(t),x ′(t)) dt=

∫

a

b

E (u′)2 + 2Fu′ v ′ +G (v ′)2 dt. (26)

Replacing cross product by dot product.

Example 18. Find the surface area of the sphere x2 + y2 + z2 =R2.

Solution. We use the parametrization

r(φ, ψ)=





R cosφ cosψ
R sinφ cosψ
R sinψ



, D=
{

(φ, ψ)| 06 φ6 2 π,−π
2

6 ψ6
π

2

}

. (27)
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Then calculate

ru=





−R sinφ cosψ
R cosφ cosψ

0



, rv=





−R cosφ sinψ
−R sinφ sinψ

R cosψ



. (28)

This gives

E=R2 (cos ψ)2, F = 0, G=R2 (29)

and therefore

S=

∫

D

R2 cosψ d(φ, ψ) = 4πR2. (30)

Example 19. Find the surface area of the torus

r(u, v)= ((a+ r cosu) cos v, (a+ r cosu) sin v, r sinu), u, v ∈ (0, 2π). (31)

Solution. We have

E= r2, F = 0, G= (r cos u+ a)2. (32)

Therefore calculation gives

S= 4π2 r a. (33)

u

v

x
y

z

(u, v)

(u+ δu, v+ δv)

(

u

v

)

→→→→→→→→→→r




x

y

z





∼r(u, v) + ru δu

∼r(u, v) + rv δv

r(u, v)

Figure 1. Stretching and twisting of of infinitesimal rectangles.

The shaded rectangle in the (u, v)-plane, with area δu · δv, is “stretched” by the mapping r to
the shaded curvilinear parallelogram in the (x, y, z)-space. The sides of this parallelogram are
approximately ru δu and rv δv, giving its area to be about ‖ru× rv‖ δu · δv. Summing the areas
of all such curvilinear parallelograms up we reach the integral formula

∫

D

‖ru× rv‖ d(u, v). (34)

Intuitions about the surface area formula.
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2. Surface Integral of Scalar Functions

2.1. Definitions and properties

Definition 20. Let S be a C1 surface. Let P = {S1, ..., Sn} be a partition of S into n pieces of C1

surfaces. Let f : S 7→R. Denote by A(Si) the area of Si for i= 1, 2, ..., n. We define the upper and

lower sums:

U(f , P ): =
∑

i=1

n [

sup
x∈Si

f(x)
]

A(Si); L(f , P ) :=
∑

i=1

n
[

inf
x∈Si

f(x)
]

A(Si). (35)

Now we define the upper and lower integrals:

U(f) := inf
P
U(f , P ); L(f) := sup

P

L(f , P ). (36)

We say f is integrable on S if U(f)=L(f). Further write the common value as

∫

S

f(x) dS. (37)

Remark 21. We can also define the integral through Riemann sum.

Theorem 22. Let S be a C1 surface parametrized by r:G 7→R
3. Let f(x, y, z) be continuous on S.

Then f is integrable on S and

∫

S

f(x, y, z) dS=

∫

D

f(x(u, v), y(u, v), z(u, v)) ‖ru× rv‖ d(u, v). (38)

If we denote

E := ru · ru, F := ru · rv, G := rv · rv, (39)

we also have

∫

S

f(x, y, z) dS=

∫

D

f(x(u, v), y(u, v), z(u, v)) EG−F 2
√

d(u, v) (40)

Proof. The proof is standard and is left as exercise. �

Exercise 15. Let f , g be integrable on S and a, b∈R. Then a f + b g is also integrable on S. Furthermore

∫

S

(a f + b g) dS = a

∫

S

f dS+ b

∫

g dS. (41)
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Corollary 23. When S is given by

z= φ(x, y), (x, y)∈D, (42)

then
∫

S

f(x, y, z) dS=

∫

D

f(x, y, φ(x, y)) 1 + φx
2 + φy

2
√

d(x, y). (43)

Exercise 16. Prove (43).

Remark 24. Note that the above results clearly still hold for surfaces S=S1∪ ··· ∪Sm where each
Si is a C

1 surface and i=/ j=⇒Si
o∩Sjo= ∅.

2.2. Calculations

• When S is given by (x(u, v), y(u, v), z(u, v)).
∫

S

f(x, y, z) dS =

∫

D

f(x(u, v), y(u, v), z(u, v)) ‖ru× rv‖ d(u, v)

=

∫

D

f(x(u, v), y(u, v), z(u, v)) EG−F 2
√

d(u, v). (44)

Here E := ru · ru, F := ru · rv, G := rv · rv.
• When S is given by z= φ(x, y).

∫

S

f(x, y, z) dS=

∫

D

f(x, y, φ(x, y)) 1 + φx
2 + φy

2
√

d(x, y). (45)

Surface integral of the first type: Formulas.

Example 25. Calculate
∫

S

z2 dS (46)

where S := {(x, y, z)|x2 + y2 + z2 =R2}.

Solution. We parametrize S:

r(φ, ψ)=





R cosφ cosψ
R sinφ cosψ
R sinψ



, D=
{

(φ, ψ)| 06 φ6 2 π,−π
2

6 ψ6
π

2

}

. (47)

Then we have

rφ=R





−sin φ cosψ
cos φ cosψ

0



, rψ=R





−cos φ sin ψ
−sin φ sinψ

cos ψ



 (48)
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and

E=R2 cos2ψ, F = 0, G=R2 =⇒ EF −G2
√

=R2 |cos ψ |=R2 cos ψ. (49)

Note that the last equality follows from the fact that −π

2
6 ψ6

π

2
.

Now we calculate

I =

∫

D

(R sin ψ)2R2 cos ψ

= R4

∫

D

(sin ψ)2 cos ψ dψ

= R4

∫

0

2π
[

∫

−π/2

π/2

(sin ψ)2 cos ψ dψ

]

dφ

= R4

∫

0

2π
[

(sin ψ)3

3

]

−π/2

π/2

dφ

= R4

∫

0

2π 2
3

dφ=
4 πR4

3
. (50)

Remark 26. The calculation can be much simplified through the following trick:

By symmetry we see that

∫

S

z2 dS=
1
3

∫

S

(x2 + y2 + z2) dS=
1
3

∫

S

dS=
4 π
3
. (51)

Example 27. Calculate
∫

S

1
z

dS (52)

where S := {(x, y, z)|x2 + y2 + z2 =1}∩ {(x, y, z)| z> h}.

Solution. We write

S: z= φ(x, y) := 1− x2− y2
√

, D: x2 + y2 6 1− h2. (53)

This leads to

1 + φx
2 + φy

2
√

=
1

1− x2− y2
√ . (54)

Then we have

∫

S

dS

z
=

∫

D

1

1− (x2 + y2)
d(x, y)

=

∫

0

2π
[

∫

0

1−h2

√

1

1− r2
r dr

]

dθ

=

∫

0

2π
[

−1

2
ln |1− r2|

]

0

1−h2
√

dθ

= −2π ln h= 2π ln (1/h). (55)

Alternatively we could parametrize using spherical coordinates.
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Solution. If we parametrize using spherical coordinates, then we have

r(φ, ψ) =





cosφ cosψ
sinφ cosψ

sinψ



, D= {(φ, ψ)| 06 φ6 2 π, arcsin h6 ψ6 π/2}. (56)

Then

∫

S

dS

z
=

∫

D

1

sin ψ
cos ψ d(φ, ψ)

= 2 π

∫

arcsin h

π/2 cos ψ

sin ψ
dψ

(u := sin ψ) = 2 π

∫

h

1 du

u

= 2 π ln (1/h). (57)

Example 28. (Demidovich 2353) Determine the coordinates of the centre of gravity of a

homogeneous parabolic envelope z=x2 + y2 (0 6 z6 1).

Solution. Clearly the x, y coordinates are zero, while

zc :=

(
∫

S

dS

)

−1
(
∫

S

z dS

)

. (58)

We parametrize

S:





x

y

φ(x, y) := x2 + y2



=⇒ 1 + φx
2 + φy

2
√

= 1+ 4 (x2 + y2)
√

; D := 0 6 x2 + y2 6 1. (59)

Now

∫

S

dS =

∫

D

1+ 4 (x2 + y2)
√

d(x, y)

=

∫

0

2π
[
∫

0

1

1+ 4 r2
√

r dr

]

dθ

=
π

4

∫

0

4

1 + u
√

du=
π
(

5 5
√

− 1
)

6
. (60)

∫

S

z dS =

∫

D

(x2 + y2) 1+ 4 (x2 + y2)
√

d(x, y)

=

∫

0

2π
[
∫

0

1

1+ 4 r2
√

r3 dr

]

dθ

(r= u/2) =
π

8

∫

0

2

1 + u2
√

u3 du

(u := sinh x) =
π

8

∫

0

x0

(cosh x)2 (sinh x)3 dx

=
π

60

(

1+ 25 5
√ )

. (61)

Therefore

zc=
1+ 25 5

√

10
(

5 5
√

− 1
). (62)
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3. Surface Integral of Vector Functions

3.1. Orientation of surfaces

Definition 29. (Orientable surface) A C1 surface S is orientable if and only if there is a
vector valued function

N :S 7→R
3 (63)

that is continuous, normal to S, and of unit length at every (x, y, z)∈S. Otherwise S is said to be
nonorientable.

Remark 30. Note that as N is only required to be continuous, the above definition still applies
in the case S is a finite union of C1 surfaces.

Example 31. Let S be given by z= φ(x, y), (x, y)∈D ⊆R2. Then S is orientable, with

N(x, y, φ(x, y))=
1

1+ φx
2 + φy

2
√





−φx
−φy

1



 or − 1

1 + φx
2 + φy

2
√





−φx
−φy

1



. (64)

Note that it’s either + everywhere or − everywhere.

Example 32. The sphere {(x, y, z)|x2 + y2 + z2 =R2} is orientable, with

N(x, y, z) =
1
R





x

y

z



 or − 1
R





x

y

z



. (65)

Example 33. (Möbius band) Consider

D := {(u, v)| −1 6u6 1, 0 6 v6 2π}, (66)

r(u, v) :=









(

2 + u sin
( v

2

))

cos v
(

2 + u sin
( v

2

))

sin v

u cos
( v

2

)









. (67)

This surface is not orientable.

Lemma 34. Let D⊆R
3 be compact. We say D is a regular region if D=Do, that is D is the closure

of its interior. Assume S= ∂D is C1. Then S is orientable.

Proof. See §4.1.1. �

Remark 35. The natural orientation of such S is the “outer normal”, that is the normal vector
that is pointing in to Dc. In other words there is δ>0 such that {x0+ tn(x0)}⊂Dc for all t∈ (0, δ).

Lemma 36. Let S be one piece of C1 surface parametrized by r: G 7→ R
3 satisfying ru × rv =/ 0

everywhere on S. Then if S is orientable, on each connected component of S there must holds either

N (x, y, z) =
ru× rv

‖ru× rv‖
∀(x, y, z)∈S (68)
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or

N (x, y, z) =− ru× rv
‖ru× rv‖

∀(x, y, z)∈S. (69)

Proof. See 4.1.2. �

Exercise 17. Try to apply the above lemma to Möbius band.

3.2. Definitions and properties

Definition 37. (Surface Integral of Vector Fields) Let S be an orientable C1 surface with

orientation given by a normal vector field n. Let f =





f

g

h



:S 7→R
3 be continuous. Then we define

∫

S

f ·dS :=

∫

S

f(x, y, z) dy∧dz+ g(x, y, z) dz ∧dx+h(x, y, z) dx∧ dy :=

∫

S

f ·n dS. (70)

For now it means nothing. dy ∧ dz is just a symbol. On the other hand we can intuitively
interpret





dy∧dz
dz ∧dx
dx∧ dy



 as n dS=





nx dS
ny dS
nz dS



. (71)

where nx, ny, nz are components of the normal vector n.
Precise meanings will be assigned to such symbols in differential geometry. There f(x, y,

z) dy ∧ dz + g(x, y, z) dz ∧ dx+ h(x, y, z) dx ∧ dy will be interperted as a “two-form”, and two-
forms can be paired with two-dimensional objects, such as the surface S, to yield a number – call
it the integral. Similarly, f dx+ g dy+h dz is a one-form which is naturally integrated along one-
dimensional objects such as curves.

What does dy ∧ dz mean?

Proposition 38. Let S be an orientable C1 surface with orientation given by a normal vector field

n. Let fi=





fi
gi
hi



:S 7→R
3, i= 1, 2 be continuous and a1, a2∈R. Then

∫

S

(a1 f1 + a2 f2) ·dS = a1

∫

S

f1 · dS + a2

∫

S

f2 · dS. (72)

In particular,
∫

S

f(x, y, z) dy∧ dz+ g(x, y, z) dz ∧dx+h(x, y, z) dx∧dy (73)

equals
∫

S

f(x, y, z) dy∧dz+

∫

S

g(x, y, z) dz ∧ dx+

∫

S

h(x, y, z) dx∧ dy. (74)

Proof. The conclusion follows immediately from (70). �

Proposition 39. Let Si, i=1,2 be orientable C1 surfaces with orientation given by a normal vector
field ni. Let f be continuous. Then

∫

S1∪S2

f · dS =

∫

S1

f · dS +

∫

S2

f ·dS. (75)

Proof. The conclusion follows immediately from (70). �

14 Math 317 Week 08: Integration on Surfaces



Theorem 40. Let a orientable C1 surface S be parametrized by r: D 7→ R
3 consistently with the

orientation (the orientation n is given by
ru×rv

‖ru×rv‖
. Then

∫

S

f dy ∧dz+ g dz ∧ dx+h dx∧dy=

∫

D

f (r(u, v)) · [ru× rv] d(u, v). (76)

This can be further simplified to
∫

D

f ·det
(

∂(y, z)
∂(u, v)

)

+ g ·det
(

∂(z, x)
∂(u, v)

)

+ h ·det
(

∂(x, y)
∂(u, v)

)

d(u, v) (77)

where
∂(y, z)

∂(u, v)
, etc., are the Jacobians.

Proof. We have
∫

S

f ·n dS=

∫

D

f(r(u, v)) · ru× rv
‖ru× rv‖

‖ru× rv‖ d(u, v) (78)

and the conclusions immediately follow. �

Corollary 41. When the surface is given by z = φ(x, y), (x, y) ∈ D with the normal pointing
upward. Then

∫

S
f dy∧dz+ g dz ∧dx+ h dx∧dy equals

∫

D

[−f(x, y, φ(x, y)) φx− g(x, y, φ(x, y)) φy+h(x, y, φ(x, y))] d(x, y). (79)

Proof. In this case we have

r(x, y) =





u

v

φ(u, v)



=⇒ ru=





1
0
φu



, rv=





0
1
φv



=⇒ ru× rv=





−φu
−φv
1



 (80)

and the conclusion follows. �

3.3. Calculations

The calculation of such integrals is actually quite easy.

• When S is given by (x(u, v), y(u, v), z(u, v)) and furthermore the specified normal n points
in the same direction as ru× rv,
∫

S

f(x, y, z) ·dS =

∫

D

f(r(u, v)) · [ru× rv] d(u, v)

=

∫

D

f det
∂(y, z)

∂(u, v)
+ g det

∂(z, x)

∂(u, v)
+h det

∂(x, y)

∂(u, v)
d(u, v). (81)

Note that the f , g, h in the above formula are all evaluated at (x(u, v), y(u, v), z(u, v)).

• When S is given by z = φ(x, y) and furthermore the specified normal n =





nx
ny
nz



 satisfies

nz> 0, that is points upward,
∫

S

f(x, y, z) ·dS =

∫

D

[−f(x, y, φ) φx− g(x, y, φ) φy+ h(x, y, φ)] d(x, y). (82)

Surface integral of the second kind: Formulas.
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Example 42. Calculate

I =

∫

Si

x2 dy∧dz+ y2 dz ∧ dx+ z2 dx∧dy (83)

where S1 is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and the orientation is such that the

normal is pointing downward; S2 is the sphere x2 + y2 + z2 = 1, with the normal pointing outward.

Solution. We notice that in either case there is symmetry with respect to the permutation x→ y→ z→x, therefore

I =3

∫

Si

z2 dx∧ dy. (84)

Thus for S1 we parametrize

S1: z= φ(x, y) := 1− x− y, D := {(x, y)| 06 x, y;x+ y6 1} (85)

Note that the specified n points downward, therefore we should use





φx

φy

−1



 in our calculation.

We have

I = 3

∫

S1

z2 dx∧ dy

= 3

∫

D

(1− x− y)2nz d(x, y)

= −3

∫

D

(1− x− y)2 d(x, y)

= −3

∫

0

1
[
∫

0

1−x

(1− x− y)2 dy

]

dx

= −3

∫

0

1
[

(1− x)3− (1− x)3 +
1

3
(1− x)3

]

dx

= −1

4
. (86)

For S2 we have I =0 thanks to symmetry.

Example 43. (Folland) Let S be the portion of the cone x2 + y2 = z2 with 06 z6 1, oriented so
that the normal points upward. Calculate

I =

∫

S

x2 dy ∧dz+ y z dz ∧dx+ y dx∧ dy. (87)

Solution. We set D= {x2 + y2 6 1}. Then after some calculation we have

I =

∫

x2+y261

[

−x3− y2 x2 + y2
√

x2 + y2
√ + y

]

d(x, y)

=

∫

0

2π ∫

0

1

[−r3 (cosθ)3− r3 (sin θ)2 + r2 sin θ] dr dθ

= −π
4
.
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4. Advanced Topics, Notes, Comments

4.1. Proofs of some theorems

4.1.1. Proof of Lemma 34

Proof. First we prove that there exists a unique function n(x): S 7→ S2 (the unit sphere in R
3)

satisfying

∃δ > 0, ∀t∈ (0, δ), x + tn(x)∈Dc. (88)

Fix any x0 ∈ S. Since S is C1, there is a well-defined normal vector n at x0, and furthermore
there is r > 0 such that S ∩B(x0, r) is given by some C1 mapping r(u, v):E ⊆R2 7→R3. Denote
x0 = r(u0, v0).

Consider the mapping

R(u, v, t) := r(u, v) + tn. (89)

It is easy to check that the Jacobian of R is non-singular at (u0, v0, 0). Thus by Inverse Function

Theorem there is r1>0 such that R−1:B(x0, r1) 7→R3 exists and is C1. We denote V :=R−1(B(x0,

r1)). Note that V is a connected open set.

We would like to prove R−1(Do ∩ B(x0, r1)) is either{t > 0} ∩ V or in {t < 0} ∩ V . Assume
otherwise. Then the following are possible situations.

i. Both R−1(Do∩B(x0, r1))∩{t>0}∩V and R−1(Dc∩B(x0, r1))∩{t>0}∩V are non-empty.

Since R−1(S ∩B(x0, r1))∩ {t > 0} ∩ V = ∅, the openness of both R−1(Do∩B(x0, r1)) and
R−1(Dc∩B(x0, r1)) contradict the connectedness of {t > 0}∩V .

ii. Both R−1(Do∩B(x0, r1))∩{t<0}∩V and R−1(Dc∩B(x0, r1))∩{t<0}∩V are non-empty.
This leads similarly to contradiction.

iii. R−1(Do∩B(x0, r1))={t=/ 0}∩V . Since D=Do , this implies R−1(D∩B(x0, r1))=V which
implies S ⊂Do. Contradiction.

iv. R−1(Dc∩B(x0, r1)) = {t=/ 0}∩V . This leads similarly to contradiction.

Thus we see that Do ∩ B(x0, r1) and Dc ∩B(x0, r1) are R({t > 0} ∩ V ) and R({t < 0} ∩ V ). We
can define uniquely n(x0) to be the one pointing “outward”, that is x0 + tn(x0)⊂Dc for all small
positive t. In other words, at every x0∈S, among the two normal vectors ±n(x), exactly one points
outward and one points inward.

Now we define n(x) to be the outward pointing normal vector and prove that it is continuous.
Assume otherwise. Then there is x0∈S and xn−→x0 such that n(xn)−→−n(x0). From the above

discussion we know that there is B(x0, r0) for some r0> 0 and a C1 mapping R:B(x0, r) 7→V ⊆R3

such that R(Dc ∩ B(x0, r0)) = V ∩ {t > 0}, and R(x0 + n(x0)) = (u0, v0, 1). Together with the
discontinuity assumption we now have

lim
n→∞

R(xn+n(xn)) = (u0, v0,−1) (90)

which contradicts the continuity of R. �

4.1.2. Proof of Lemma 36

Proof. Assume S is orientable. By defintion of C1 surfaces S is connected.
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Fix a point (x0, y0, z0)∈S. Since ru× rv

‖ru× rv‖
(x0, y0, z0) is normal to S and has unit length, we must

have either N =
ru× rv

‖ru× rv‖
or N =− ru× rv

‖ru× rv‖
at (x0, y0, z0). Wlog we assume the former case. Now

we try to prove that N =
ru×rv

‖ru× rv‖
at all other (x, y, z)∈S too.

We consider f :S 7→R defined through

f(x, y, z) =N (x, y, z) · ru× rv
‖ru× rv‖

(x, y, z). (91)

Then we have

i. f(x0, y0, z0) = 1;

ii. f(x, y, z)∈{−1, 1} for all (x, y, z)∈S.

Now as ru × rv =/ 0 everywhere on S,
ru× rv

‖ru× rv‖
is continuous on S. Together with the continuity

assumption on N , we conclude that f(x, y, z) is a continuous function on S. By the intermediate
value theorem, if there is (x, y, z) ∈ S such that f(x, y, z) =−1, then along any curve connecting
(x, y, z) and (x0, y0, z0) there is a point (x′, y ′, z ′) such that f(x′, y ′, z ′) = 0. Contradiction. �

4.2. The counterexample by H. A. Schwarz

“The example of Schwarz, ... , was the starting point of an extensive and fascinating literature. Still,
we do not possess as yet a satisfactory theory of the area of surfaces, ...”

—– Tibor Rado, 19438

• Gelbaum, B. R. and Olmsted, J. M. H., Counterexamples in Analysis , Chapter 11, Example 7.

Let

S= {(x, y, z)|x2 + y2 = 1, 0 6 z6 1}. (92)

Let m∈N. Define 2m+1 circles:

Ck,m :=S ∩
{

(x, y, z)| z=
k

2m

}

, k= 0, 1, 2, ..., 2m. (93)

Now let n∈N. Pick on each Ck,m n points:

Pk,m,j :=



















(

cos
2 j π

n
, sin

2 j π

n
,
k

2m

)

k even
(

cos
(2 j+1)π

n
, sin

(2 j+1)π
n

,
k

2m

)

k odd

, j= 0, 1, ..., n− 1. (94)

Connecting this points in a natural manner we obtain 4m n congruent space triangles. It can be
calculated that the area of each triangle is

sin
(

π

n

)

[

1

4m2
+
(

1− cos
(

π

n

))

2
]

1/2
. (95)

8. Tibor Rado, What is the Area of a Surface? , The American Mathematical Monthly, Vol. 50, No. 3, Mar., 1943, pp. 139 - 141.

18 Math 317 Week 08: Integration on Surfaces



Exercise 18. Prove the above formula.

Thus the area of the polyhedron inscribed in the cylinder is

Amn := 2π
sin (π/n)

π/n

(

1 + 4m2
(

1− cos
π

n

)

2
)

1/2
. (96)

Exercise 19. Prove that, as m,n→∞,

a) the diameters of the triangles −→0;

b) The limit of Amn depends on how m, n −→ ∞. Furthermore for any s > 2 π (including ∞), there is a

strictly increasing function M :N 7→N such that

lim
n→∞

AM(n),n= s. (97)

Note that the area of the cylinder is 2π.

Remark 44. (From (Lord) ) In 1868 J. A. Serret9 suggested the “obvious” generalization of the
natural method of finding arc length to calculation of surface area:

“Given a portion of a curved surface bounded by a curve C, we call the area of this surface
the limit S towards which the area of an inscribed polyhedral surface tends, where the inscribed
polyhedral surface is formed by triangular faces and is bounded by the polygonal curve G,
which limits the curve C”

“One must show that the limit S exists and that it is independent of the way in which the
faces of the inscribed surface decreases.”

The problem with this approach was first realized by H. A. Schwarz10, who wrote to Italian
mathematician Gennochi about this in 1880. Later in 1882 Gennochi’s student Peano annouced
the same result in a course he taught. Around the same time Schwarz wrote to Hermite about his
example. Hermite published Schwarz’s letter in his course notes, which was published later than
that of Peano’s. Consequently there are disputes about priority.

4.3. Area of C1 surfaces

Theorem 45. Let S be a piece of C1 surface parametrized by r:D 7→R
3. Let P := {D1, ...,Dn} be

any partition of D, that is

D=∪k=1
n Dk, i=/ j=⇒Di

o∩Dj
o= ∅, ∀i, ∂Di consists of finitely many C1 curves. (98)

Let (u1, v1)∈D1, ..., (un, vn)∈Dn be arbitrary. Denote

ri(u, v) := r(ui, vi)+ ru (u−ui)+ rv (v− vi), Si= ri(Di), i=1, 2, ..., n. (99)

Define the diameter of the partition as

d(P ) :=max {d(D1), ...., d(Dn)}, (100)

where for a set E, d(E) := supx,y∈E ‖x− y‖.

9. of Frenet-Serret frame in Differential Geometry.

10. Gesammelte Mathematische Abhandlungen, Vol. 2, p. 309. Berlin, Julius Springer, 1890.
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Then we have

lim
d(P )−→0

∑

i=1

n

A(Si) =

∫

D

‖ru× rv‖ d(u, v). (101)

Proof. Since ru, rv are continuous on D̄, they are uniformly continuous and so is ru × rv. Note
that this guarantees the integrability of ‖ru× rv‖ on D.

For any ε> 0, take δ > 0 such that

∀‖(u1, v1)− (u2, v2)‖<δ, ‖ru(u1, v1)× rv(u1, v1)− ru(u2, v2)× rv(u2, v2)‖< ε

µ(D)
. (102)

Thanks to Lemma 12 we have
∣

∣

∣

∣

∣

∑

i=1

n

A(Si)−
∫

D

‖ru× rv‖ d(u, v)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i=1

n [

µ(Di) ‖ru× rv‖(ui, vi)−
∫

Di

‖ru× rv‖ d(u, v)

]

∣

∣

∣

∣

∣

6
∑

i=1

n ∫

Di

|‖ru× rv‖(ui, vi)−‖ru× rv‖(u, v)| d(u, v)

<
∑

i=1

n ∫

Di

ε

µ(D)
d(u, v)

= ε

∑

i=1
n

µ(Di)

µ(D)
= ε. (103)

Thus ends the proof. �

Exercise 20. Prove that if f , g are uniformly continuous on a set A, then so are f · g , f × g.

Exercise 21. Prove that there is M > 0 such that

max {d(S1), ..., d(Sn)}6Md(P ). (104)

4.4. Independence of parametrization for surface integrals

Definition 46. Let D, E ⊂ R2 be non-empty. A C1 map T : E 7→ D is called an admissible
transformation if

i. it is injective, and

ii. The Jacobian is positive for all (u, v)∈E (or all negative, that is does not change sign).

Exercise 22. Show that ii =⇒ i.

Theorem 47. (Independence of parametrization for surface integrals of the first

kind) Let r:D 7→R
3 be a C1 surface. Let R:E 7→R

3 be defined through

R(u, v) := r(T (u, v)). (105)

Then any function f integrable on r is also integrable on R. Furthermore

∫

f(r) ‖ru× rv‖ d(u, v) =

∫

E

f(R) ‖Rs×Rt‖ d(s, t). (106)

Proof. Exercise. �
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Theorem 48. (Independence of parametrization for surface integrals of the second

kind) Let S be a C1 surface parametrized in two ways r1:D1 7→R3 and r2:D2 7→R3. Further assume

that r1
−1 ◦ r2:D2 7→D1 is a C1 bijection with non-vanishing Jacobian. Then we have

r1u× r1v

‖r1u× r1v‖
(u1, v1) =± r2u× r2v

‖r2u× r2v‖
(u2, v2) (107)

where r1(u1, v1)=r2(u2, v2), and + is taken if the Jacobian is always positive, and − is taken if the
Jacobian is always negative.

Proof. First notice that, since the Jacobian of r1
−1 ◦ r2 is by assumption continuous, the fact that

it is non-vanishing implies that it is either positive everywhere or negative everywhere.

Define
(

U(u, v)
V (u, v)

)

=
(

r1
−1 ◦ r2

)

(u, v). (108)

Then we have

r1(U(u, v), V (u, v)) = r2(u, v). (109)

Direct calculation gives

r2u× r2v=det

(

∂(U , V )
∂(u, v)

)

r1U × r1V . (110)

The conclusion then follows. �

4.5. Surface integrals in R
N

Now we briefly discuss surfaces in R
N and integration on them. It is clear that we should first

understand the surface area of T (D) where D is the unit cube in R
N−1 and T is a linear mapping

R
N−1 7→R

N. We note that a reasonable definition of Area(T (D)) would be

∀x∈R
N , Vol(C) =A(T (D)) |n ·x| (111)

where C is the parallelogram spanned by {T (e1), ..., T (eN−1),x}.
Now recall that we know this volume to be

det ( T (e1) ··· T (eN−1) x ). (112)

Exercise 23. Prove that

A(T (D)) =

∥

∥

∥

∥

∥

∥





detA1···
detAN





∥

∥

∥

∥

∥

∥

(113)

where each matrix Ai is obtained from the matrix ( T (e1) ··· T (eN −1) ) by deleting the i-th row.

Theorem 49. Let S be an N − 1 dimensional surface in R
N defined through r:D ⊆R

N−1 7→R
N

with r ∈C1. Then the surface area of S is given by

A(S) =

∫

D

∥

∥

∥

∥

∥

∥





detA1
···

detAN





∥

∥

∥

∥

∥

∥

d(u1, ..., uN−1) (114)

where each matrix Ai is obtained from the matrix
(

ru1 ··· ruN−1

)

by deleting the i-th row.
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Remark 50. Similarly one can define the integration of scalar and vector functions.

This argument can be easily generalized to the situation of a M -dimensional surface in N -
dimensional space.

Theorem 51. Let S be an M-dimensional surface in RN defined through r: D ⊆ RM 7→RN with
r ∈C1. Then the surface area of S is given by

A(S)=

∫

D

det (JT J)
√

d(u1, ..., uM) (115)

where J :=
(

∂ri
∂uj

)

is the Jacobian matrix.

Exercise 24. Show that Theorem 49 is a corollary to the above result.

Proof. We will sketch the first step of the proof, that is proving (115) for linear r. In this case we
have

r(u) :=Ju. (116)

Note that J is a N ×M matrix. Now write J = ( b1, ..., bM ). Let {bM+1, ..., bN} be an orthonormal
set of vector spanning [span{b1, ..., bM}]⊥.

Define

R(u1, ..., uN) := r(u1, ..., uM) +uM+1 bM+1 + ···+ uN bN . (117)

We see that

µM(r(D)) = µN(R(D× [0, 1]N−M)) (118)

where µM , µN denote Jordan measures in R
M and R

N respectively. Thus all we need to do is to
calculate

∣

∣

∣

∣

det
∂(R1, ..., RN)

∂(u1, ..., uN)

∣

∣

∣

∣

. (119)

Simple calculation gives

∂(R1, ..., RN)

∂(u1, ..., uN)
= ( J B ), B := ( bM+1 ··· bN ). (120)

Thus we have

∣

∣

∣

∣

det
∂(R1, ..., RN)

∂(u1, ..., uN)

∣

∣

∣

∣

= det [( J B )T( J B )]
√

= det

(

JTJ 0
0 I

)

√

√

√

√ = det (JTJ)
√

. (121)

Thus ends the proof for linear r. �

Exercise 25. Complete the proof.

Remark 52. For surface integrals in R
N, it is more convenient (but not absolutely necessary)

to adopt the framework of differential forms. Therefore we do not discuss it here. There are
introductory sections on differential forms in many advanced calculus books, e.g. (Folland) §5.9.
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5. More Exercises and Problems

For (many many) more exercises on calculation of line and surface integrals,
see (Demidovich) ,(Efimov) .

5.1. Basic exercises

5.1.1. Surfaces in R
3

Exercise 26. Let r(u, v)=





x(u, v)
y(u, v)
z(u, v)



. Prove that

ru× rv=











det
∂(y, z)

∂(u, v)

det
∂(z, x)

∂(u, v)

det
∂(x, y)

∂u, v











. (122)

Also discuss the condition ru× rv=/ 0 in the context of inverse function theorem.

Exercise 27. Let S be parametrized by r =





x(ρ, θ)
y(ρ, θ)
z(ρ, θ)



 where (ρ, θ)∈D is polar coordinates. Then

A(S) =

∫

D

[

ρ2

(

∂z

∂ρ

)

2

+

(

∂z

∂θ

)

2

+ ρ2

]

1/2

d(ρ, θ). (123)

5.1.2. Surface integral of scalar functions (first kind/type)

Exercise 28. (Demidovich) Compute the surface integral
∫

S

(x+ y+ z) dS (124)

where S is the boundary of the unit cube {(x, y, z)| 06 x, y, z6 1}. (Ans:11 )

Exercise 29. (Demidovich 2347) Evaluate
∫

S

(x2 + y2) dS (125)

where S is the sphere x2 + y2 + z2 =R2. (Hint:12 )

Exercise 30. (Demidovich 2348) Evaluate
∫

S

x2 + y2
√

dS (126)

where S is the lateral surface of the cone
x2

a2
+
y2

a2
− z2

b2
= 0, 06 z6 b.

5.1.3. Surface integral of vector functions (second kind/type)

Exercise 31. Let f(x, y, z):R3 7→R be C1. Let a∈R be such that Df is non-singular at every (x, y, z) satisfying
f(x, y, z)=a. (Such a are called “regular values” of f). Then S :={(x, y, z)| f(x, y, z)=a} is orientable. (Hint:13 )

Exercise 32. Calculate

I =

∫

S

x3 dy∧ dz+ y3 dz ∧ dx+ z3 dx∧ dy (127)

where S is the ellipsoid
{

(x, y, z)| x
2

a2
+
y2

b2
+
z2

c2
= 1

}

(128)

11. 9.

12. Symmetry.

13. Consider the gradient of f .
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oriented by the outer normal. (Ans:14 )

Exercise 33. Calculate
∫

S





x

y

z



·dS (129)

where S=
{

(x, y, z)| x
2

a2
+
y2

b2
+
z2

c2
= 1, x, y, z> 0

}

. (Ans:15 )

Exercise 34. (Efimov) Calculate
∫

S

y dz ∧ dx (130)

where S is the first octant part of x+ y+ z= a. (Ans:16 )

Exercise 35. (Efimov) Calculate
∫

S

dx∧ dy

z
(131)

where S is the sphere x2 + y2 + z2 = a2 with outer normal. (Hint:17 )

5.2. More exercises

Exercise 36. Let S be a surface of revolution and C its generating curve. Let C be parametrized by arc length

and let ρ(s) be the distance between the point on C at length s and the rotation axis. Prove Pappus’ Theorem

A(S) = 2π

∫

0

l

ρ(s) ds. (132)

Exercise 37. Let S be the unit sphere {x2 + y2 + z2 = 1}. Prove that

∫

S

f(a x+ b y+ c z) dS= 2 π

∫

−1

1

f
(

u a2 + b2 + c2
√ )

du. (133)

(Hint:18 )

5.3. Problems

Problem 1. Prove that the surface area of C1 surfaces are independent of parametrization.

14.
4

5
πa b c (a2 + b2 + c2).

15.
3

8
πa b c.

16. a3/6.

17. The outer normal is (x/a, y/a, z/a). Write the integral to integral of the first kind.

18. First reduce to the case a2 + b2 + c2 = 1. Then do a change of coordinates.
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