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1. Arc Length of Curves

1.1. C1 curves in RN

Definition 1. (Parametrized Curve; Trace of a Curve)

� A parametrized curve in RN is a continuous mapping

x: [a; b] 7!RN ; x(t) :=

0@ x1(t)
���

xN(t)

1A (1)

� The variable t is called the parameter, the representation ( 1) is called a parametrization,
the functions xn(t) are called parametrization functions.

� Let x(t) be a parametrized curve. Its image x([a; b]) is called the trace of the curve.

Example 2. Consider the parametrized curves:

(cos t; sin t) t2 [0; 2�]; (cos 2 t; sin 2 t) t2 [0; 2�]: (2)

They are two di�erent parametrized curves, but have the same trace.

Remark 3. In some books a distinction is made between an �arc� and a �curve�. We will not make
such distinction.

Remark 4. We will use other types of intervals in place of [a; b] when it is convenient and will not
cause any confusion.

Exercise 1. Recall what it means to say x is continuous. Prove that the continuity of x is equivalent to the
continuity of every xn(t), n=1; 2; 3; :::; N.

Counter-examples such as Peano's curve reveals that requiring only continuity of x is far from
enough to guarantee the curve to �t our intuition. Stronger restriction on x than only continuity
is necessary when discussing many properties of the curves. The most convenient assumptions for
our purposes are as follows.

Definition 5. (C1 curve) A curve x: [a; b] 7!RN is called C1 if the following are satis�ed.

� x 2 C1([a; b]), that is x is di�erentiable on (a; b) and both x and its derivative x0 are
continuous on [a; b] (for x0 we require the one-sided limits limt¡!b¡x

0(t) and limt!a+x
0(t)

both exist);

Exercise 2. Prove that this is equivalent to the same requirements for every xn(t) on [a; b].

� The curve is simple, that is not self-crossing, that is

t1=/ t2=)x(t1)=/ x(t2): (3)

� The curve is regular, that is x0(t)=/ 0 for all t2 [a; b].
Exercise 3. Does this condition imply the previous one (t1=/ t2=)x(t1)=/ x(t2))? Justify your answer.

Remark 6. It will be clearly seen that many of the following results still hold for union of �nitely
many C1 curves.
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Example 7. The following are C1 curves

(2 cos (2 t); 2 sin (2 t)); t2 [0; �]; (4)

(3 cos t; 2 sin t; et); t2R; (5)

while the following are not

(t3; t2); t2R; (6)

(t3¡ 4 t; t2¡ 4); t2R; (7)

(t; jtj): t2R (8)

Exercise 4. Plot the above curves.

Remark 8. We notice that whether a curve is C1 or not depends not only on the trace, but also
on the parametrization. For example,

(cos t; sin t) and (cos t3; sin t3); t2 [0; 1] (9)

parametrize the same curve, but the �rst is C1 while the second is not. In the following, when we
say a curve is C1, we mean there is a parametrization x(t) of this curve that is C1. This is justi�ed
by the following theorem which basically says that all regular parametrizations of one same curve
are kind of equivalent.

Theorem 9. (Equivalence of Parametrization) Let x(t): [a; b] 7!RN and y(s): [c; d] 7!RN be
two C1 curves having the same trace L in RN. Then there is a C1 bijection T : [c;d] 7! [a; b] such that

x(T (s))= y(s): (10)

Proof. See �4.2.1. �

Exercise 5. Prove that in fact T is either strictly increasing or strictly decreasing, and furthermore

T 0(s0)=

8>>><>>>:
jy 0(s0)j
jx0(s0)j

y(c)=x(a)

¡jy
0(s0)j

jx 0(s0)j
y(c)=x(b)

: (11)

Definition 10. (Orientation) When T is strictly increasing we say x; y have the same orienta-
tions; When T is strictly decreasing we say x; y have opposite orientations.

1.2. Arc Length of C1 curves

1.2.1. De�nition and properties

To de�ne length of curves, we recall the notion of �partition�:

(Partition) A partition P of a compact interval [a; b] is a �nite set of points:

P = fa= t0<t1< ���<tm= bg: (12)

We denote the diameter of the partition as

d(P ) :=maxf(t1¡ t0); :::; (tm¡ tm¡1)g: (13)
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Definition 11. (Length of curve) Let x(t): [a; b] 7! RN represent a curve L � RN. Let
P = fa= t0<t1< ���<tm= bg be any partition of [a; b]. Then we write

L(x; P ) :=
X
k=0

m¡1
kx(tk+1)¡x(tk)k=

X
k=0

m¡1
[(x1(tk+1)¡x1(tk))2+ ���+(xN(tk+1)¡xN(tk))2]1/2: (14)

If

lim
d(P )¡!0

L(x; P ) (15)

exists and is �nite, we say the curve x(t) is recti�able, and say the limit l is its arc length.

Remark 12. Here is limit is a kind of �net convergence�, de�ned as follows:
We say

l= lim
d(P )¡!0

L(x; P ) (16)

if and only if, for every ">0, there is � > 0, such that for any partition P with d(P )<�, there holds

jl¡L(x; P )j<": (17)

Remark 13. Note that the de�nition relies on the parametrization x. We will try to get rid of this
dependence soon.

Example 14. The straight line x(t) :=u+ v t, t2 [a; b], is recti�able, with l(x) = (b¡ a) kvk. In
particular, any compact interval [a; b] is recti�able with l([a; b]) = b¡ a.

Example 15. The curve x: [0; 1] 7!R2

x(t) :=

8<:
�
t; t sin

�
�
t

��
t > 0

(0; 0) t=0
(18)

is not recti�able.

Proof. For any n2N, we make the partition:

t0=0; t1=
2

2n+1
; ::: ; tn¡1=

2
3
; tn=1: (19)

Then we have

x(0)=

�
0
0

�
; x(t1)=

 
t1

2 (¡1)n
2n+1

!
; ::: (20)

It is easy to check that X
m=0

n¡1

kx(tm+1)¡x(tm)k>
2
3
+ ���+ 2

2n+1
(21)

and the limit cannot be �nite. �

Exercise 6. Prove that Koch curve (Koch snow�ake: http://en.wikipedia.org/wiki/Koch_snow�ake) is not
recti�able.

Theorem 16. The following are equivalent for a C1 curve x: [a; b] 7!RN:

A) It is recti�able with length l <1;

B) supPL(x; P )= l <1;
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C )
R
a

b kx0(t)k dt= l <1. Recall that the length of a vector is de�ned as kuk := u1
2+ ���+uN

2
p

.

Proof. See �4.2.2. �

Corollary 17. Let L be a C1 recti�able curve. Then its length is independent of parametrization.

Exercise 7. Prove the corollary (Hint:1 ).

Corollary 18. Let f : [a; b] 7!R be C1. Then the graph of f, as a curve in R2, is a C1 recti�able
curve with

l=

Z
a

b

1+ f 0(x)2
p

dx: (22)

Exercise 8. Prove the corollary. (Hint:2 )

Exercise 9. Generalize the above corollary to f : [a; b] 7!RN¡1.

In practice we often need to deal with segments or unions of C1 curves. The following theorem
basically says that nothing can go wrong.

Theorem 19. Let L;L1; L2 be recti�able C1 curves. Then

a) Any segment of L is also recti�able;

b) L1[L2 is recti�able and l(L1\L2)= l(L1)+ l(L2).

Remark 20. Note that L1[L2 may not be C1.

1.2.2. Calculation of arc length

If the curve is parametrized in the general form (x1(t); :::; xN(t)), t2 [a; b], then

Length=
Z
a

b

x1
0 (t)2+ ���+xN

0 (t)2
p

dt; (23)

If the curve is given as the graph of a function y= �(x), x2 [a; b], then

Length=
Z
a

b

1+ �0(x)2
p

dx (24)

Arc length formulas

Example 21. Calculate the arc length of the parabola y=
x2

2
from x=¡1 to x=1.

Solution. The natural parametrization is�
t

t2/2

�
; t2 [¡1; 1]: (25)

Then the arc length can be calculated asZ
¡1

1

1+ t2
p

dt = 2

Z
0

1

1+ t2
p

dt

t=
ex¡ e¡x

2
= 2

Z
0

x0
�
ex+ e¡x

2

�
2

dx

�
ex0¡ e¡x0

2
=1

�
= x0+

1

4
[e2x0¡ e¡2x0]: (26)

1. Use formula C) in Theorem 16.

2. Parametrization (t; f(t)).

6 Math 317 Week 07: Integration Along Curves



To �nd out the value we calculate

ex0¡ e¡x0=2=) (ex0+ e¡x0)2=8=) ex0+ e¡x0=2 2
p

=) e2x0¡ e¡2x0=4 2
p

: (27)

Therefore the arc length is given by

x0+ 2
p

= 2
p

+ sinh¡1 (1): (28)

Example 22. Calculate the arc length of the graph of sinx from x=0 to x=2�.

Solution. The natural parametrization of the curve is�
t

sin t

�
; t2 [0; 2�]: (29)

Then we have the arc length to be Z
0

2�

1+ (cos t)2
p

dt: (30)

It turns out that this integral does not have a closed form solution.

Example 23. Calculate the arc length of the cycloid
�

t¡ sin t
1¡ cos t

�
, t2 [0; 2�].

Solution. The parametrization is already given. We calculateZ
0

2�

[(t¡ sin t)0]2+[(1¡ cos t)0]2
p

=

Z
0

2�

(1¡ cos t)2+(sin t)2
p

=

Z
0

2�

2¡ 2 cos t
p

dt

=

Z
0

2�

2¡ 2
�
1¡ 2

�
sin t

2

�
2
�r
dt

= 2

Z
0

2� ���sin� t
2

���� dt
= 4

Z
0

�

sin udu

= 8 (31)

t

a bt t+ �t

x(a)

x(b)

x(t)

x(t+ �t)

kx(t+ �t)¡x(t)k� kx0(t)k �t

a b

y= f(x)

�x

�x

f 0(x) �x

1+ f 0(x)2
p

�x

Understanding the arc length formulas
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2. Integration Along Curves I: Line Integral of Scalar
Functions

2.1. De�nition and properties

Let f :RN 7!R. Let x: [a; b] 7!RN representing a curve L. We would like to de�neZ
L
f(x) ds: (32)

To de�ne this integral, we need to �rst generalize the idea of partition to recti�able curves.

(Partition along curves) Let L be a recti�able curve with parametrization x:
[a; b] 7!RN. A partition P of L is a set of points along L x0 :=x(t0);x1 :=x(t1); :::;
xm=x(tm), such that

i. x(t0) and x(tm) are the two end points of L;

ii. ftng is either strictly increasing or strictly decreasing.

We will denote by Lk the segment between xk and xk+1, and denote by lk the arc
length of Lk. We de�ne the diameter of P as

d(P ) :=maxfl0; l1; :::; lm¡1g (33)

Definition 24. (Line integral of the first kind/type) We de�ne the line integral as follows.
Let P be an arbitrary partition. Let � := f�0; :::; �m¡1g�L be such that

�i2Li: (34)

We form the sum

I(f ;�; P ) :=
X
i=0

m¡1

f(�i) li: (35)

If

lim
d(P )¡!0

I(f ;�; P ) (36)

exists and is �nite, we say f is integrable along L, and denote this limit by
R
L
f(x) ds.

Remark 25. The limit above is de�ned by:

The limit is s if and only if for any " > 0, there is � > 0 such that for any partition P with
d(P )<�, and any choice of � satisfying �i2Li, we have

js¡ I(f ;�; P )j<": (37)
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Exercise 10. Let L be recti�able with length l. Then the constant function f(x)� c is integrable along L and

Z
L

f(x) ds= c l: (38)

Theorem 26. Let f be integrable on L1; L2. Further assume that L1\L2 has arc length 0. Then f
is integrable on L1[L2 andZ

L1[L2
f(x) ds=

Z
L1

f(x) ds+

Z
L2

f(x) ds: (39)

Exercise 11. Prove the above theorem.

2.2. Integration along C1 curves

Theorem 27. Let x(t): [a; b] 7! RN parametrize a C1 curve. Let f : RN 7!R be continuous on a
compact interval I satisfying L� Io. ThenZ

L
f(x) ds=

Z
a

b

f(x(t)) kx0(t)kdt: (40)

Proof. See �4.2.3. �

Corollary 28. Let the curve L be given by x2 [a; b]; y= �(x), then

Z
L
f(x; y) ds=

Z
a

b

f(x; �(x)) 1+ �0(x)2
p

dx: (41)

Summary:

If the curve L is parametrized in the general form (x1(t); :::; xN(t)), t2 [a; b], thenZ
L
f(x)ds=

Z
a

b

f(x1(t); :::; xN(t)) x1
0 (t)2+ ���+xN

0 (t)2
p

dt; (42)

If the curve is given as the graph of a function y= �(x), x2 [a; b], thenZ
L
f(x)ds=

Z
a

b

f(x; �(x)) 1+ �0(x)2
p

dx (43)

Line integral of the �rst type/kind
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Example 29. Calculate Z
L
x2 ds (44)

where L is the unit circle.

Solution. We have the parametrization (cos t; sin t) with t2 [0; 2�]. Calculate:

Z
L

x2 ds=

Z
0

2�

(cos t)2dt=�: (45)

Exercise 12. Explain why x(0)=x(2�) is not a problem in the above example.

Example 30. Calculate Z
L

1+ y
p

ds (46)

where L is the boundary of the shape enclosed by the parabola y=x2 and y=1.

Solution. We write L=L1[L2 with

L1: (t; t
2); t2 [¡1; 1]; L2: (t; 1); t2 [¡1; 1]: (47)

Then we have Z
L

1+ y
p

ds =

Z
L1

1+ y
p

ds+

Z
L2

1+ y
p

ds

=

Z
¡1

1

1+ t2
p

1+ t2
p

dt+

Z
¡1

1

2
p

dt

= 2+
2

3
+2 2

p
: (48)

Example 31. (Demidovich, No. 2309) With what force will a massM distributed with uniform
density over the circle x2+ y2=1; z=0, act on a mass m located at the point A: (0; 0; b)?

Solution. Denote the circle by C. Since M is uniformly distributed along C, the density is �= M

2�
. Intuitively, along

an in�nitesimal segment ds, the mass is � ds. Therefore the force on m is given by the following integral (note that
obviously the x; y components of the force are 0 so we only calculate the z component.)

Z
C

�
¡ Gm� ds

x2+ y2+(b¡ z)2

�
=¡Gm

M

2 �

1

1+ b2

Z
C

ds=¡GmM

1+ b2
: (49)

10 Math 317 Week 07: Integration Along Curves



3. Integration Along Curves II: Line Integral of Vector
Functions

3.1. De�nition and properties
There is a trivial generalization to integrating a vector functions f : RN 7! RM along a curve x:
[a; b] 7!RN: Z

L
f(x) ds :=

0B@
R
L
f1(x) ds
���R

L
fM(x) ds

1CA: (50)

We are interested in the following non-trivial one.

Definition 32. (Line integral of the second kind/type) Let f :RN 7!RN and let L�RN.
Let xi and �i be as in �2.1. Denote A := x0 and B := xm.We say the second type of line integral
(from A to B) exists, if the limit

lim
d(P )¡!0

X
(f(�i) � (xi+1¡xi)) (51)

exists and is �nite. We denote the limit asZ
AB

f(x) � dl: (52)

or as the less compact notationZ
AB

f1(x) dx1+ ���+ fN(x) dxN: (53)

Exercise 13. Prove that ����Z
AB

f (x) �dl
����6�max

x2L
kf (x)k

�
� l (54)

where l is the arc-length of the curve L :=AB .

Theorem 33. Let f be interable along L = AB from A to B. Then it is also integrable along L
from B to A and furthermore Z

AB
f (x) � dl=¡

Z
BA

f(x) � dl: (55)

Proof. Exercise. �

Theorem 34. We haveZ
AB

f1(x) dx1+ ���+ fN(x) dxN =

�Z
AB

f1(x) dx1

�
+ ���+

�Z
AB

fN(x) dxN

�
: (56)

Proof. Exercise. Note that each term on the RHS is also a line integral of the second kind. �

Theorem 35. Let L1 :=AB and L2 :=BC. De�ne L=L1[L2 with orientation ABC. ThenZ
ABC

f (x) � dl=
Z
AB

f(x) �dl+
Z
BC

f (x) � dl: (57)
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Proof. Exercise. �

3.2. Integration along C1 curves

When the curve is C1, line integrals of the second kind have a simpler equivalent de�nition.

Definition 36. (Line integral of the second kind along C1 curves) Let L be C1 with
end points A;B and orientation A¡!B. Then we de�neZ

AB
f(x) � dl :=

Z
L
[f(x) �T (x)] ds (58)

where T (x) is the unit tangent vector at x2L whose direction is consistent with the orientation of
the curve.

Remark 37. Note that the right hand side of (58) is line integral of the �rst kind, and therefore
is already well-de�ned.

We know that

T (x(t))=
x0(t)

kx0(t)k (59)

if x(t): [a; b] is a parametrization of L such that x(a) = A; x(b) = B. This immediately gives the
following formula for calculation purpose:Z

AB
f(x) � dl =

Z
L
[f(x) �T (x)] ds

(Calculate line integral of the 1st kind) =

Z
a

b

[f(x(t)) �T (x(t))] kx0(t)kdt

=

Z
a

b
�
f(x(t)) � x0(t)

kx0(t)k

�
kx0(t)kdt

=

Z
a

b

[f(x(t))] �x0(t) dt

=

Z
a

b

[f1(x(t))x1
0 (t)+ ���+ fN(x(t))xN

0 (t)] dt: (60)

That De�nition 36 is equivalent to De�nition 32 for C1 curves follows from the theorem below.

Theorem 38. Let x(t): [a; b] 7! RN parametrize a C1 curve L = AB and furthermore x(a) = A;

x(b)=B. Let f :RN 7!R be continuous on a compact interval I satisfying L� Io. Then the integralZ
AB

f(x) �dl (61)

exists in the sense of De�nition 32 and can be calculated asZ
AB

f(x) �dl=
Z
a

b

[f1(x(t))x1
0 (t)+ ���+ fN(x(t))xN

0 (t)] dt: (62)

Proof. See �4.2.4. �
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If the curve L is parametrized in the general form (x1(t); :::; xN(t)), t2 [a; b], thenZ
AB

f (x) �dl=
Z
a

b

[f1(x(t))x1
0 (t)+ ���+ fN(x(t))xN

0 (t)] dt; (63)

If the curve is given as the graph of a function y= �(x), x2 [a; b], thenZ
AB

�
f(x; y)
g(x; y)

�
�dl=

Z
a

b

[f(x; �(x))+ g(x; �(x))�0(x)] dx: (64)

It should be emphasized that the parametrization must be consistent with the orientation of the
curve: x(a)=A;x(b)=B, or in the graph situation, (a; �(a))=A; (b; �(b))=B.

Line integral of the second type/kind

Example 39. Calculate Z
Li

(x2+ y2) dx+(x2¡ y2) dy (65)

where L1 is given by the line segments (0; 0) to (1; 1) and then to (2; 0); L2 is given by the line
segment (0; 0) to (2; 0).

Solution.

� L1.
We parametrize L1: t2 [0; 2],

(x(t); y(t)) :=

�
(t; t) t2 [0; 1]
(t; 2¡ t) t2 [1; 2] : (66)

Then Z
L1

(x2+ y2) dx+(x2¡ y2) dy =

Z
0

2

[(x(t)2+ y(t)2)x0(t)+ (x(t)2¡ y(t)2) y 0(t)] dt

=

Z
0

1

[(t2+ t2) � 1+ (t2¡ t2) � 1] dt

+

Z
1

2

[(t2+(2¡ t)2) � 1+ (t2¡ (2¡ t)2) � (¡1)] dt

=
4
3
: (67)

� L2.
We �rst parametrize L2: t2 [0; 2]

(x(t); y(t)) := (t; 0): (68)

Then Z
L2

(x2+ y2) dx+(x2¡ y2) dy=

Z
0

2

[(t2+02) � 1+ (t2¡ 02) � 0] dt= 8

3
: (69)

Example 40. Calculate Z
L

x dx+ y dy

x2+ y2
p (70)

where L�f(x; y)jx> 0g is any C1 curve connecting (1; 1) and (2; 2).

Solution. Let (x(t); y(t)) be any C1 parametrization. Then we haveZ
L

x dx+ y dy

x2+ y2
p =

Z
a

b x(t)x0(t)+ y(t) y 0(t)

x(t)2+ y(t)2
p dt

=
1

2

Z
a

b (x(t)2+ y(t)2)0

x(t)2+ y(t)2
p dt

=

Z
a

b ¡
x(t)2+ y(t)2

p �0dt
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= x(b)2+ y(b)2
p

¡ x(a)2+ y(a)2
p

= 2
p

: (71)

Exercise 14. What would happen if we drop the assumption L�f(x; y)jx> 0g?

Example 41. Calculate Z
L
(y¡ z) dx+(z ¡x) dy+(x¡ y) dz (72)

where L is the intersection of the cylinder x2+ y2=1 and the plane x+ y+ z=0. The orientation
is such that when seen from the top the curve runs counter-clockwise.

Solution. First we parametrize the curve

(x(�); y(�); z(�)) := (cos �; sin �;¡cos �¡ sin �) (73)

with � 2 [0; 2 �]. ThenZ
L

(y¡ z) dx+(z ¡x) dy+(x¡ y) dz =

Z
0

2�

(2 sin �+ cos �) (cos �)0d�

+

Z
0

2�

(¡2 cos�¡ sin�) (sin �)0d�

+

Z
0

2�

(cos�¡ sin�) (¡cos�¡ sin�)0d�

= ¡6 �: (74)

Example 42. (Demidovich no.2343) A �eld is generated by a force of constant magnitude F in
the positive x-direction. Find the work that the �eld does when a material point traces clockwise
a quarter of the circle x2+ y2=R2 lying in the �rst quadrant.

Solution. The situation is as follows:

F
m

x

y

We parametrized the curve:

(R sin �; R cos �); �2 [0; �/2]: (75)

Now calculate (denote the components of F by Fx; 0)

Work =

Z
C

F �dl

= R

Z
0

�/2
�
Fx
0

�
�
�

cos �
¡sin �

�
d�

= R

Z
0

�/2

[Fxcos �] d�

= RFx: (76)

Remark 43. Intuitively, we can think of dl as an �in�nitesimal vector� and interpret f �dl as �dot
product� between two vectors. Following this interpretation we can write ds := kdlk and thus
dl= T ds. From which (58) formally follows.
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4. Advanced Topics, Notes, and Comments

4.1. Green's theorem

Lemma 44. Let D be the compact triangle with @D oriented counter-clockwise. Let f(x; y); g(x;
y)2C1(G) for some open set G�D. ThenZ

@D
f dx+ g dy=

Z
D

�
@g
@x
¡ @f
@y

�
d(x; y): (77)

Proof. We prove the special case D = ABO with A= (1; 0), B = (0; 1), and O being the origin.
Then we have Z

OA
f dx=

Z
0

1

f(t; 0) dt;

Z
BO

f dx=0; (78)

and Z
AB

f dx=¡
Z
0

1

f(1¡ t; t) dt=¡
Z
0

1

f(t; 1¡ t) dt: (79)

Thus we have Z
@D

f dx =

Z
0

1

[f(t; 0)¡ f(t; 1¡ t)] dt

=

Z
0

1
�
¡
Z
0

1¡t @f
@y
(t; s) ds

�
dt

= ¡
Z
D

@f(t; s)
@y

d(t; s)=¡
Z
D

@f(x; y)
@y

d(x; y): (80)

In the above the second equality is due to fundamental theorem of calculus version 1, and the third
equality is due to Fubini. The application of both theorems is justi�ed by the hypothesis that
f(x; y)2C1(G).

Similarly we have Z
@D

g dy=

Z
D

@g(x; y)

@x
d(x; y) (81)

and the lemma is proved. �

Exercise 15. Prove the lemma for general triangles.

Corollary 45. Let D be a polygon. Let @D be its boundary oriented counter-clockwise. Let f(x; y);
g(x; y)2C1(G) for some open set G�D. ThenZ

@D
f dx+ g dy=

Z
D

�
@g
@x
¡ @f
@y

�
d(x; y): (82)

Lemma 46. Let AB be a C1 curve. Let P =fA=x0; :::;xm=Bg be a partition. Let LP be the union
of the line segments xixi+1. Let f ; g 2C1(G) for an open set G�AB [LP for all P. Then

lim
d(P )¡!0

����Z
AB

f dx+ g dy¡
Z
LP

f dx+ g dy

����=0: (83)
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Exercise 16. Prove the above lemma. (Hint:3 )

Lemma 47. Let D be Jordan measurable and such that @D is the union of �nitely many C1 curves.
Let P be any partition along @D following the speci�ed orientation. Let LP be the union of the
segments xixi+1. Let DP be the domain enclosed by LP such that DP

o is to the left of LP when moving
along LP. Let f :G 7!R be continuous for some open set G containing D�. Then

lim
d(P )¡!0

Z
DP

f(x; y) d(x; y)=

Z
D
f(x; y) d(x; y): (84)

Exercise 17. Prove that there is an open set V such that D� �V � V� �G, and �0> 0, such that LP � V when
d(P )<�0.

Proof. Let V� ; �0 be as in the above exercise. By assumption there is M>0 such that jf(x; y)j<M
on V� . All we need to prove is

lim
d(P )¡!0

Z
DP4D

jf(x; y)jd(x; y)= 0 (85)

where DP4D := (DP ¡D)[ (D¡DP). This is guaranteed if

lim
d(P )¡!0

�(DP4D)= 0: (86)

This is left as exercise. �

Exercise 18. Prove (86).

Theorem 48. Let D be Jordan measurable and such that @D is the union of �nitely many C1 curves,
oriented such that when moving along @D, Do is always on the left hand side. Then we haveZ

@D
f dx+ g dy=

Z
D

�
@g
@x
¡ @f
@y

�
d(x; y): (87)

Proof. Let P be any partition along @D following the speci�ed orientation. Let LP be the union
of the segments xixi+1. Let DP be the domain enclosed by LP such that DP

o is to the left of LP
when moving along LP . Then by Lemma 46 and 47 we haveZ

LP

f dx+ g dy=

Z
DP

�
@g
@x
¡ @f
@y

�
d(x; y): (88)

Taking limit d(P )¡! 0 we obtain (87). �

Remark 49. One way to remember the formula, in particular the signs, is to test it on the unit
square. In this case, if we denote A1=(0; 0); A2=(1; 0); A3=(1; 1); A4=(0; 1), then we haveZ

A1A2

f dx+ g dy=

Z
0

1

f(x; 0) dx: (89)

3. Check De�nition 32.
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Doing similar things for the other three, we haveZ
@D

f dx+ g dy =

Z
0

1

[f(x; 0)¡ f(x; 1)] dx+

Z
0

1

[g(1; y)¡ g(0; y)] dy

= ¡
Z
0

1
�Z

0

1 @f(x; y)
@y

dy

�
dx+

Z
0

1
�Z

0

1 @g(x; y)
@x

dx

�
dy

= ¡
Z
D

@f(x; y)
@y

d(x; y)+

Z
0

1
�Z

0

1 @g(x; y)
@x

dx

�
dy: (90)

Example 50. (Area) From (87) it is clear that if we choose g(x; y)=x and f(x; y)=0, then we
have

�(D)=

Z
D
d(x; y)=

Z
D

�
@g
@x
¡ @f
@y

�
d(x; y)=

Z
@D

x dy: (91)

Alternatively, we can take g(x; y)= 0 and f(x; y)=¡y. This leads to

�(D)=¡
Z
@D

y dx: (92)

From the above it is also clear that

�(D)=
1
2

Z
@D

x dy¡ y dx: (93)

Example 51. (Isoperimetric inequality) We consider the following problem:

max�(D) subject to l(@D)= l (94)

where l > 0 is �xed.

Jakob Steiner in 1838 showed that if the solution exists, then @D must be a circle. The �rst
complete proof was by Adolf Hurwitz in 1902 using Fourier series. The following proof was given
by E. Schmidt in 1938. We follow the presentation in (do Carmo) .

Denote 2 r := diam(D) :=max fkx¡ ykj x; y 2Dg. Then wlog we can assume D is contained
between x=¡r and x= r. Let S := f(x; y)jx2+ y26 rg. We further assume that D\S=? and D
is above S.

First notice that it su�ces to consider D's that are convex. In this case @D ¡f(x; y)j x=�rg
is separated into exactly two parts: those points above and those points blow.

Let
�
x(t)
y(t)

�
: t2 [a; b] be a C1 parametrization of @D such that D is always to the left of @D. We

parametrize @S as follows:

8t2 [a; b]; X(t)= x(t); Y (t)=� 1¡x(t)2
p

(95)

where + is chosen if (x(t); y(t)) lies �above� and ¡ is chosen if (x(t); y(t)) lies �below�. Note that�
X(t)
Y (t)

�
may not be a C1 parametrization. However one can check that it is the union of �nitely

many C1 curves.
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Now we have

�(D)=

Z
@D

x dy=

Z
a

b

x(t) y 0(t) dt=

Z
a

b

X(t) y 0(t) dt; (96)

� r2=

Z
@S
¡y dx=¡

Z
a

b

Y (t)X 0(t) dt=¡
Z
a

b

Y (t)x0(t) dt: (97)

Thus

�(D)+� r2 =

Z
a

b

X(t) y 0(t)¡Y (t)x0(t) dt

6
Z
a

b

X(t)2+Y (t)2
p

x0(t)2+ y 0(t)2
p

dt

= r

Z
a

b

x0(t)2+ y 0(t)2
p

dt

= r l: (98)

Now notice

r l> �(D)+� r2> 2 �(D)
p

� r2
p

=) �(D)6 l2

4�
: (99)

Since clearly when D is a circle we have �(D)= l2

4 �
, the proof is complete.

4.2. Proofs of Some Theorems

4.2.1. Proof of Theorem 9

Proof. Since x; y have the same trace, for every s2 [c; d] there is at least on t2 [a; b] such that

y(s)=x(t): (100)

Now we prove that such t is unique. Otherwise there are t1 =/ t2 such that x(t1) = x(t2) = y(s).
Contradiction to the regularity of x.

Thus we have a one-to-one mapping T : [c; d] 7! [a; b] such that x(T (s))= y(s). But clearly this
mapping has to be onto since otherwise there would be a t02 [a; b] such that

x(t0)2/ fx2RNjx= y(s) for some s2 [c; d]g: (101)

This contradicts the assumption that x; y have the same trace.
Next we prove that T is continuous. Assume otherwise, that there is s0 2 [a; b] such that T is

not continuous there. Thus we have two sequences

sn
0 ; sn

00¡! s0 but T (sn0 )¡! t1; T (sn
00)¡! t2; t1=/ t2: (102)

But

x(t1)= lim
n!1

x(T (sn
0 ))= lim

n!1
y(sn

0 )= y(s0) (103)

and similarly

x(t2)= y(s0): (104)

Therefore x(t1)=x(t2). Contradiction.
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Finally we prove di�erentiability. Fix a point s02 (c; d) and denote t0 := T (s0). By di�erentia-
bility of x; y we know there are vectors u0; v02RN such that

lim
t!t0

x(t)¡x(t0)
t¡ t0

=u0; lim
s!s0

y(s)¡ y(s0)
s¡ s0

=v0: (105)

This leads to

lim
s!s0

�
x(T (s))¡x(T (s0))

T (s)¡T (s0)
� T (s)¡T (s0)

s¡ s0

�
= v0: (106)

Since

lim
s!s0

x(T (s))¡x(T (s0))
T (s)¡T (s0)

=u0=/ 0; (107)

there is at least one i2f1; 2; :::; N g such that

lim
s!s0

xi(T (s))¡xi(T (s0))
T (s)¡T (s0)

= u0i=/ 0=) lim
s!s0

T (s)¡T (s0)
s¡ s0

exists and equals
v0i
u0i

: (108)

This also gives continuity of T 0 and ends the proof. �

Exercise 19. Compare the last step of the above proof with the proof of Chain rule in single variable calculus.
Do they follow the same idea? Is there any di�erence?

4.2.2. Proof of Theorem 16

Proof.

� We �rst prove B()C by showing

sup
P

L(x; P )=

Z
a

b

kx0(t)kdt (109)

(if one side is 1 then so is the other side).
On one hand for any partition P ,

L(x; P )6
Z
a

b

kx0(t)kdt: (110)

This follows immediately from

kx(ti+1)¡x(ti)k=
Z

ti

ti+1

x0(t) dt

6Z
ti

ti+1

kx0(t)kdt: (111)

Therefore we have

sup
P
L(x; P )6

Z
a

b

kx0(t)kdt: (112)

On the other hand, since x2C1, for any "> 0, there is � > 0 such that

8jt¡ sj<�; kx0(t)¡x0(s)k< "
2 (b¡ a) : (113)

Now take n2N such that h := b¡ a
n

<�, and de�ne partition

Pn := ft0= a; t1= a+h; t2= a+2h; :::; tn= a+nh= bg: (114)
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We have����kx(ti+1)¡x(ti)k¡ Z
ti

ti+1

kx0(t)kdt
���� 6 ���� Z

ti

ti+1

x0(t) dt

¡Z
ti

ti+1

kx0(ti)kdt
����

+

����Z
ti

ti+1

kx0(ti)kdt¡
Z
ti

ti+1

kx0(t)kdt
����

=

���� Z
ti

ti+1

x0(t) dt

¡Z
ti

ti+1

x0(ti) dt

����
+

����Z
ti

ti+1

kx0(ti)kdt¡
Z
ti

ti+1

kx0(t)kdt
����

6
Z

ti

ti+1

[x0(t)¡x0(ti)] dt


+

Z
ti

ti+1

jkx0(ti)k¡kx0(t)kjdt

6 2

Z
ti

ti+1

kx0(t)¡x0(ti)kdt

< 2 (ti+1¡ ti)
"

2 (b¡ a) =
ti+1¡ ti
b¡ a ": (115)

This leads to �����L(x; Pn)¡
Z
a

b

kx0(t)kdt

�����<" (116)

and the conclusion follows from the arbitrariness of ".

� A=)B is left as exercise.

� C =)A is left as exercise. �

Exercise 20. Prove that if limd(P )¡!0L(x; P )= l <1, then supPL(x; P )= l.

Exercise 21. Prove that if
R
a

b kx0(t)kdt= l <1 then the limit limd(P )¡!0L(x; P ) exists and equals l.

Exercise 22. Prove that x: [0; 1] 7!R2

x(t) :=

8<:
�
t; t2 sin

�
�

t

��
t > 0

(0; 0) t=0
(117)

is recti�able. Note that x(t) is not C1.

Remark 52. Note that x0(t)=/ 0 is not necessary for the above theorem.

Exercise 23. Prove this claim.

4.2.3. Proof of Theorem 27

Proof. Denote by l the arc length of the curve L.
Let " > 0 be arbitrary. Since f is continuous on a compact set, it is uniformly continuous and

there is �1> 0 such that

8x; y 2L; kx¡ yk<�=)jf(x)¡ f(y)j< "
l
: (118)

Now we take any partition P = fx0; :::;xmg�L with d(P )<�.
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First notice that,

kxi+1¡xik=
Z

ti

ti+1

x0(t) dt

6 Z
ti

ti+1

kx0(t)kdt= li: (119)

Thus li<�=)kxi+1¡xik<�.
Now for any � := f�0; :::; �m¡1g�L satisfying �i2Li we have�����I(f ;�; P )¡

Z
a

b

f(x(t)) kx0(t)kdt

����� =

�����X
i=0

m¡1 �
f(�i) li¡

Z
ti

ti+1

f(x(t)) kx0(t)kdt
������

6
X
i=0

m¡1 ����Z
ti

ti+1

[f(�i)¡ f(x(t))]kx0(t)kdt
����

6
X
i=0

m¡1 Z
ti

ti+1

jf(�i)¡ f(x(t))jkx0(t)kdt

<
"
l

X
i=0

m¡1 Z
ti

ti+1

kx0(t)kdt

=
"
l
� l= ": (120)

Thus we have

lim
d(P )¡!0

I(f ;�; P )=

Z
a

b

f(x(t)) kx0(t)kdt (121)

and the proof ends. �

Exercise 24. Prove that the line integral is independent of parametrization.

4.2.4. Proof of Theorem 38.

Proof. Let "> 0 be arbitrary. By continuity of f there is � > 0 such that

8kx¡ yk<�; kf(x)¡ f(y)k< "
l
: (122)

Here l is the arc length of L.
Now let P = fA= x0;x1; :::;xm=Bg be a partition of AB and let �i2 xixi+1 be arbitrary.

Then we have �����X
i=0

m¡1

(f(�i) � (xi+1¡xi))¡
Z
a

b

[f1(x(t))x1
0 (t)+ ���+ fN(x(t))xN

0 (t)] dt

�����
6

X
i=0

m¡1 ����(f(�i) � (xi+1¡xi))¡ Z
ti

ti+1

[f1(x(t))x1
0 (t)+ ���+ fN(x(t))xN

0 (t)] dt

����
=

X
i=0

m¡1 ����Z
ti

ti+1
[f(�i)¡ f(x(t))] �x0(t) dt

����
6

X
i=0

m¡1 ����Z
ti

ti+1

kf(�i)¡ f(x(t))k kx0(t)kdt
����

<
"
l

X
i=0

m¡1 Z
ti

ti+1
kx0(t)kdt= "

l
� l= ": (123)
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Thus the limit exists and equals
R
a

b
[f1(x(t))x1

0 (t)+ ���+ fN(x(t))xN
0 (t)] dt. �

4.3. Arc length parametrization
For a recti�able curve, there is a standard parametrization using arc length: x: [0; l] 7!RN such that
s equals the arc length from x(0) to x(s).

Theorem 53. Let x~: [a; b] 7!RN be a C1 curve. Then we can parametrize it using arc length: x(s):
[0; l] 7!RN. Then x(s) is also C1 and we have for all x2 (0; l)

kx0(s)k=1: (124)

Proof. Assume wlog that x~(a)=x(0). Let S(t) be the arc length of the curve from x~(a) to x~(t),
that is

x(S(t))=x~(t): (125)

Then we have

S(t)=

Z
a

t

kx~ 0(u)kdu: (126)

Since x~ 0 is continuous, so is kx~ 0k and it follows from Fundamental Theorem of Calculus (2nd version)
that

S 0(t)= kx~ 0(t)k: (127)

By the inverse function theorem we conclude that S(t) has a inverse function T (s) satisfying

T 0(s)=
1

kx~ 0(T (s))k : (128)

Finally, �x any s02 (0; l). Denote t0=T (s0). Then we have

lim
s¡!s0

x(s)¡x(s0)
s¡ s0

= lim
s!s0

�
x~(T (s))¡x~(T (s0))

T (s)¡T (s0)
� T (s)¡T (s0)

s¡ s0

�
=

x~ 0(T (s))
kx~ 0(T (s))k : (129)

Note that the last equality holds because the limits of both ratios exist. �

Definition 54. (Tangent vector) Let L be a C1 curve and let x(t) be a C1 parametrization of
it. Then we de�ne the tangent vector at x(t) to be

t(t) :=
x0(t)
kx0(t)k : (130)

Remark 55. It should be emphasized that the direction of � depends on the orientation of the
curve.

Exercise 25. What is the relation between the tangent vectors of the same curve with two parametrizations of
opposite orientations?

Exercise 26. When L is parametrized by arc length, we have

t(s)=x 0(s): (131)

Exercise 27. Prove that Z
AB

f (x) �dl=
Z
L

[f � t] ds: (132)
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Definition 56. (Normal vector; Curvature) Let L be a C1 curve and let x(s) be its arc length
parametrization. De�ne the normal vector and curvature of L at x=x(s) to be

n(x) :=
x00(s)

kx00(s)k ; �(s) := kx00(s)k: (133)

Exercise 28. Derive the formula for n for arbitrary C1 parametrization x(t).

Exercise 29. Using Green's theorem to prove: If f =
�
f
g

�
:D� 7!R2 is C1,Z

@D

f �n ds=
Z
D

�
@f

@x
+
@f

@y

�
d(x; y): (134)

Definition 57. (Binormal vector; Osculating plane) When N = 3, the vector b(s) :=
t(s)� n(s) is called the binormal vector of the curve at x(s). The plane spanned by t; n is called
the osculating plane at x(s). Thus b is a normal vector to the osculating plane.

Exercise 30. Prove that b0(s) kn.

Definition 58. (Torson) The factor � in

b0(s)= � (s)n(s) (135)

is called the torsion of the curve at x(s).

Exercise 31. Prove that the torsion is given by

� (s)=¡(x
0(s)�x 00(s)) �x 000(s)

j�(s)j2 : (136)

Here s is the arc length parameter.

Remark 59. The curvature � measures how fast the curve is leaving the tangent line; The torsion
� measures how fast the curve is leaving the osculating plane.

Exercise 32. Calculate the tangent, normal, binormal, curvature, torsion at every point for the curve

(cos t; sin t; t); t2R: (137)

Exercise 33. Prove that n 0(s)=¡�(s) t(s)¡� (s) b(s). Therefore the evolution of the (t;n;b) coordinate system
is governed by

t0 = �n; (138)
n 0 = ¡� t¡ �n; (139)

b0 = �n: (140)

4.4. The Cauchy-Crofton formula
Consider the set of all straight lines in R2. It is clear that there is a bijection between it and the
set f(p; �)2D := [0;1)� [0; 2 �)g where p is the distance from the line to the origin and � is the
angle between the x-axis and the vector starting from the origin and perpendicular to the line.

Theorem 60. (Cauchy-Crofton) Let C be a C1 curve in R2. Let a function N(p; �) be de�ned
as: N(p; �) = # of times the line (p; �) intersects C. Then N(p; �) is Riemann integrable and
furthermore

l(C)=
1
2

Z
D
N(p; �) d(p; �): (141)
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Exercise 34. Prove that if l(C) is �nite, then there is R > 0 such that N(p; �) = 0 for all p > R. Thus the
integration in (141) is in fact over a �nite interval.

Exercise 35. Prove that N(p; �) is Riemann integrable.

Exercise 36. Prove that is su�ces to prove (141) for all piecewise linear curves. Then conclude that it su�ces
to prove the formula for one single straight line segment.

Exercise 37. Prove that the integral in (141) is invariant under rigit motion of C: That is if C 0 can be obtained
from C by translation, rotation, and �ipping, then

R
D
N(p; �) d(p; �)=

R
D
N 0(p; �) d(p; �), where N 0(p; �) is the

intersection counting function for C 0.

Proof. Thanks to the above exercises, it su�ces to prove (141) for the case C is a straight line
segment with ends (¡l/2; 0) and (l/2; 0).

Note that in this case N(p; �) takes either 0 or 1. Therefore all we need to �gure out are those
(p; �) such that the corresponding line intersects C.

This is equivalent to���
¡l/2
0

�
¡ p

�
cos �
sin �

��
�
�

cos�
sin�

��
�
���

l/2
0

�
¡ p

�
cos �
sin �

��
�
�

cos�
sin�

��
6 0: (142)

This simpli�es to �
p+

l cos �
2

�
�
�
p¡ l cos �

2

�
6 0() p6 l

2
jcos � j: (143)

Now we integrate: Z
06p6 l

2
jcos� j

d(p; �)=

Z
0

2� l

2
jcos � j d�=2 l: (144)

Thus ends the proof. �

Example 61. (141) and similar formulas have many applications such as medical imaging. In
particular, it can be used to estimate the length of curves.

Let r > 0. Consider a family of parallel straight lines with distance r. Count the number of
intersections. Rotate the lines by �/4, �/2, 3 �/4 and count the number of intersections. Add the
numbers up to get n. Then

l(C)� 1
2
n r

�
4
: (145)

For example we apply this method to the unit circle. Consider all the horizontal lines with distance
r. Each will have two intersections so that total is 4/r. The other three families give the same
numbers. Therefore we have

2�� 1
2
16
r
r
�
4
=2�: (146)

So the estimate is in fact accurate for circles.

Remark 62. This method has been applied to estimate the length of DNA molecules. See p. 46
of (do Carmo) .

Problem 1. Explain why the above method of estimation makes sense. Prove that if C is a circle then the
estimate is accurate. Try to obtain error estimates for general curves.

Problem 2. Find a non-recti�able curve C such that the integral in (141) is well-de�ned. Thus the formula can
be used to de�ne arc length for non-recti�able curves.
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5. More Exercises and Problems

For (many many) more exercises on calculation of line and surface integrals,
see (Demidovich) ,(Efimov) ,(PKUB) .

5.1. Basic exercises

5.1.1. Curves in RN

Exercise 38. Let x: [a; b] 7!RN be a C1 curve. Prove that

x(t) �x 0(t)= 0()kx(t)k is constant. (147)

(Hint:4 )

Exercise 39. (do Carmo) Show that the tangent lines to the regular parametrized curve x(t) := (3 t; 3 t2; 2 t3)
make a constant angle with the line y=0; z=x.

Exercise 40. (do Carmo) Let x: [a; b] 7!RN be continuous. Let t02 (a; b). We say the curve has a weak tangent
at t0 if the line determined by x(t0+h) and x(t0) has a limit position as h¡! 0. We say it has a strong tangent
at t0 if the line determined by x(t0+h) and x(t0+h0) has a limit position as h; h0¡! 0.

a) Prove that (t3; t2) has weak tangent at t=0 but not strong tangent.

b) If x is a regular curve then it has strong tangent at every t02 (a; b).

Exercise 41. (do Carmo) Consider the curve (a ebt cos t; a ebt sin t), t2 [0;1) with a> 0; b < 0. Prove that its
arc length is �nite.

Exercise 42. Let a curve be given in polar coordinates by �=P(�) for � 2 [a; b].

a) Give su�cient conditions on P(�) such that the curve is C1? (Hint:5 )

b) Prove that, when the curve is C1, its arc length is given by

l=

Z
a

b

P(�)2+P0(�)2
p

d�: (148)

Exercise 43. Let a curve be given in cylindrical coordinates by

(�(t); �(t); z(t)); t2 [a; b]: (149)

Prove that its arc length is given byZ
a

b

�0(t)2+ �(t)2 � 0(t)2+ z 0(t)2
p

dt: (150)

5.1.2. Line integral of the �rst type/kind (scalar function)

Exercise 44. (Demidovich, Ch. 7 Example 1) Calculate the line integralZ
C

(x+ y) ds (151)

where C is the contour of the triangle ABO with vertices A(1; 0); B(0; 1) and O(0; 0). (Ans:6 )

Exercise 45. Calculate Z
C

ds

x2+ y2+5
p (152)

4. kx(t)k is constant () x(t) �x(t)= kx(t)k2 is constant.
5. x(�)=P (�) cos�, y(�) =P (�) sin�.

6. 2
p

+1.
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where C is the segment of the straight line connecting O(0; 0) and A(1; 2). (Hint:7 )

Exercise 46. (Demidovich, No. 2301) CalculateZ
C

ds
x2+ y2+ z2

(154)

where C is the �rst turn of the screw-line x=a cos t; y= a sin t; z= b t.

Exercise 47. (Demidovich, No. 2302) CalculateZ
C

2 y2+ z2
p

ds (155)

where C is the circle x2+ y2+ z2= a2, x= y. (Hint:8 )

5.1.3. Line integral of the second type/kind (vector function)

Exercise 48. Calculate Z
L

y2dx¡x2dy (156)

for

a) L=boundary of the triangle (1; 0)! (0; 1)! (¡1; 0)! (1; 0);

b) L= the circle x= cos t; y=1+ sin t.

(Answer:9 )

Exercise 49. Calculate Z
L

xdy¡ y dx (157)

with L from (0; 0) to (1; 1) given by

a) the straight line x= y;

b) polygonal curve (0; 0)! (1; 0)! (1; 1);

c) polygonal curve (0; 0)! (0; 1)! (1; 1);

d) y=x2;

e) x= cos t; y=1+ sin t.

(Answers:10 )

Exercise 50. Calculate Z
L

y dx+ z dy+x dz (158)

for

a) L is the polygonal curve (0; 0; 0)! (1; 0; 0)! (1; 1; 0)! (1; 1; 1);

b) L is the polygonal curve (0; 0; 0)! (0; 1; 0)! (1; 1; 0)! (1; 1; 1);

c) L is the straight line segment (0; 0; 0)! (1; 1; 1);

d) L is x= t; y= t2; z= t3, t2 [0; 1].

(Answers:11 )

7. Parametrization (t; 2 t), t2 [0; 1]. Now calculateZ
0

1 1

t2+(2 t)2+4
p 12+22

p
dt=

Z
0

1 dt

t2+1
p : (153)

Change of variables: Either t= tanu or t= sinhu.

8. Note that on this curve x= y, so 2 y2+ z2
p

= x2+ y2+ z2
p

= a. Answer is thus 2�a2.

9. ¡2/3;¡2�.
10. 0; 1;¡1; 1/3; �/2¡ 1.
11. 1; 2; 3/2; 89/60.
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Exercise 51. Calculate

I =

Z
S

0@ y
¡z
x

1A�dS (159)

where S is the intersection of 1

2
(x2+ y2)+ z2=a2 with y=x. The orientation is such that it is counter-clockwise

when seen from the positive x direction. (Ans:12 )

Exercise 52. Let F :RN 7!R be C1. Let L be a C1 curve connecting two points xA and xB. The orientation is
from xA to xB. Prove Z

L

(rF ) �dl=F (xB)¡F (xA): (160)

Here rF =

0BBB@
@F

@x1���
@F

@xN

1CCCA.
Then use this result to calculateZ

L

2x y z3dx+x2 z3 dy+3x2 y z2dz (161)

where L is any C1 curve connected (1; 2;¡1) and (2; 3; 1).

Exercise 53. (Brand) Let f =
�
(x; y; z) z> 0
(x; y;¡z) z < 0

. Prove that
R
L
f �dl=0 for any closed C1 curve L. (Hint:13 )

5.1.4. Green's Theorem

Exercise 54. Let D be a regular region with C1 boundary. Let f ; g be C1. ProveZ
D

@f
@x

+
@g
@y

=

Z
@D

f dy¡ g dx: (162)

Exercise 55. Prove that Z
L

(x+ y2) dx+2x y dy= 48 (163)

for every C1 curve L from (1; 2) to (3; 4).

Exercise 56. Use Green's Theorem to calculate the area of ellipsis
n
(x; y)j x

2

a2
+

y2

b2
6 1
o
.

Exercise 57. Use Green's Theorem to calculateZ
D

x2 d(x; y) (164)

where D is the triangle with vertices (x1; y1)¡ (x2; y2)¡ (x3; y3). (Hint:14 )

Exercise 58. Calculate Z
L

(2x+ y) dx+(2x¡ y) dy (166)

using Green's formula. Here L is the ellipsis x=2 cos t; y= sin t, t2 [0; 2 �], oriented counter-clockwise.

Exercise 59. Find the area enclosed by 4 y=x2 and 4x= y2.

Exercise 60. Let L= f(x; y)jx2+ y2=R2g be the boundary of the disk centered at the origin and with radius
R. Explain why

1

R

Z
L

x2ds=�R2: (167)

Note that the integral is Line integral of �rst type. (Hint:15 )

12. 2�a2.

13. Consider the parts of L above and below z=0, connect the intersections.

14. Take f =0; g=x3/3. Answer:

1
12

[(y2¡ y1) (x2+x1) (x2
2+x1

2)+ (y1¡ y3) (x1+x3) (x1
2+x3

2)+ (y3¡ y2) (x3+x2) (x3
2+x2

2)]: (165)

15. Represent the tangent vector using x=
�
x
y

�
.
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5.2. More exercises
Exercise 61. Let a curve be given in spherical coordinates. Derive the formula for its arc length.

Exercise 62. Let L be a C1 curve. Let x0;x2L. Denote by jx0x j the arc length of the part of the curve between
the two points. Prove

lim
x¡!x0

jx0x j
kx¡x0k

=1: (168)

Exercise 63. Treat the interval [a; b]�R as a curve in R2. Then the usual integralZ
a

b

f(x) dx (169)

in single variable calculus, according to our de�nitions of line integrals, is a line integral of a scalar function, or
a vector function?

Exercise 64. (do Carmo) Assume that all normals of a parametrized curve pass through a �xed point. Prove
that the trace of the curve is contained in a circle. (Note that we do not have any restriction on the dimension N)

Exercise 65. (Brand) Let L be a curve in R2 from xA to xB. Prove that

A=
1

2

Z
L

x dy ¡ y dx (170)

where A is the area of the region D enclosed by the line segments connecting the origin to xA;xB together with
L. (Hint:16 )

5.3. Problems
Problem 3. Let L be recti�able. Let L0 be the straight line connecting the two ends of L. Then l(L)> l(L0).
Problem 4. Let f :RN 7!R be continuous. Let L be a C1 curve in RN. Let P =fx0;x1; ::::;xmg be a partition of
L. Denote by LP the union of line segments: x0x1[x1x2[ :::[xm¡1xm, oriented x0!x1! ::::!xm. Prove that

lim
d(P )¡!0

����Z
LP

f ds¡
Z
L

f ds

����=0: (171)

Problem 5. Let t;n; b: [a; b] 7!R3 satisfy the Frenet formulas:

t0 = �n; (172)
n 0 = ¡� t¡ �n; (173)

b0 = �n: (174)

Further assume that t;n;b form an orthonormal basis at s=a. Prove that t;n; b form an orthonormal basis for
all s2 [a; b].

Problem 6. Let x: [a; b] 7!R2 be a plane curve. Denote by �(s) the angle between the x-axis and the tangent
t(s) (counter-clockwise, starting from positive x-axis). Prove that

t0(s)= (� 0(s)) t? (175)

where t? :=
�
¡t2
t1

�
. What is the relation between � 0 and the curvature?

Problem 7. (do Carmo) Let a plane curve be given through polar coordinates: � = P(�). Prove that the
curvature is

�(�)=
2 (P0(�))2¡P(�) P00(�)+P(�)2

[P0(�)2+P(�)2]3/2
: (176)

Problem 8. (do Carmo) Show that the knowledge of the binormal b(s) of a curve with nonzero torsion
everywhere, determines the curvature and the absolute value of the torsion.

Problem 9. (do Carmo) Show that the knowledge of the normal n(s) of a curve with nonzero torsion every-
where, determines the curvature and the torsion.

16. Along the two straight lines the integrals are 0.
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Problem 10. Let x: [0; l] 7!R3 be parametrized by arc length and satisfy x 0(s)=/ 0;x 00(s)=/ 0 at every s. Prove
that

x(s)=x(0)+

�
s¡ �(0)2 s3

3!

�
t(0)+

�
s2�(0)

2
+
s3�0(0)

3!

�
n(0)¡ s3

3!
�(0) � (0) b(0)+R(s) (177)

where lims!0R(s)/s3=0.

Problem 11. (do Carmo) Let x: [0; l] 7!R3 be a smooth curve with arc length parametrization. Let s02 (0; l).
Assume that a plane P passing s0 satisfy the following:

� P contains the tangent line at s0;

� Given any (a; b)3 s0, there exist points of x([0; l]) in both sides of P .

Prove that P is the osculating plane.

Problem 12. (do Carmo) Show that the curvature �(t) =/ 0 of a regular parametrized curve in R3 is the
curvature at the same point of the projection of the curve to its osculating plane at this point.

Problem 13. (do Carmo) Let x be a simple closed C1 plane curve with length l. Further assume that the
curvature satis�es 06 �6 c everywhere along the curve. Prove

l> 2�

c
: (178)

(Hint:17 )

Problem 14. (do Carmo) Let x(t): t2 [0; l] be a closed convex C1 plane curve positively oriented. We de�ne
a new curve

y(t): t2 [0; l]; y(t) :=x(t)¡ rn(t) (180)

where r > 0 and n(t) is the normal vector.

a) Let l(y); l(x) denote the lengths of the two curves respectively. Prove that

l(y)= l(x)+ 2� r; (181)

b) Let A(y); A(x) denote the areas enclosed by the two curves respectively. Prove that (Hint:18 )

A(y)=A(x)+ r l+� r2; (182)

c) What would happen if we drop the �convexity� hypothesis?

(You can use the fact that
R
L
�ds=2 � where � is the (signed) curvature of the curve).

17. Let A denote the area enclosed. Green's formula:

2A=

Z
x � (¡n) ds=

Z
�¡1x � t0ds: (179)

Integrate by parts then use isoperimetric inequality.

18. Similar idea as the previous problem.
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