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�The in�nite! No other question has ever moved so profoundly the spirit of man.�
� David Hilbert (1862 - 1943)

�The concept of the in�nite has intrigued and perplexed people for thousands of years. Over the
centuries, authorities like Aristotle (384 - 322 B.C.) and Thomas Aquinas (1225 - 1274) argued that
(with the exception of God) nothing was actually in�nite, but some things could be potentially in�nite,
... They thought of an induction proof ... as a potentially in�nite process. The work of Georg Cantor
(1845 � 1918) transformed this situation. Cantor's investigations of the foundations of the real numbers
led him to work with actual in�nities.�

� Thomas Q. Sibley. The Foundations of Mathematics , John Wiley & Sons, Inc., 2009. Chapter 5.

1. Counting Infinite Sets

1.1. Cardinality

Definition 1. Two sets A and B are said to have the same cardinality (or �power�), denoted A�B,
if and only if there is a bijection1 f :A 7!B.

Example 2. A= fa; b; c; d; eg, B= f1; 2; 3; 4; 5g, C = f1; 2; 3; 4g. Then

A�B; A�C: (1)

Remark 3. This is clearly a generalization of everyday counting, where we set up a bijection
between the set and a �nite subset of N. Such idea of comparing the sizes of sets can be traced
back to Aristotle, who puzzled over the obvious contradiction of the following two facts about two
circles of di�erent size: They have the same number of points; They have di�erent circumference.

He didn't realize that, the size of a point set has several di�erent measures: its cardinality
(how many points are there), its measure (how long is the circumference), its density (whether
the points ��ll� a continuum or not). This point was only fully realized near the end of the 19th
century.

What did Aristotle miss?

Theorem 4. � is an equivalence relation:

i. A�A;
ii. A�B=)B�A;
iii. A�B and B�C then A�C.

Exercise 1. prove the above theorem.

Example 5. In his Dialogue Concerning the Two Chief World Systems, published in 1632, Galileo
Galilei claimed that

�There are as many squares as there are natural numbers because they are just as
numerous as their roots.�

Let's prove that this is indeed the case.2

1. Recall that a bijection A 7! B is a function A 7! B that is one-to-one and onto, more speci�cally, one-to-one means
f(x) = f(y) =) x= y; Onto means f(A) =B.

2. In fact Galileo wrote in his Dialogues Concerning the Two New Sciences, First day, �If I should ask further how many
squares there are, one might reply truly that there are as many as the corresponding number of roots, since every square has
its own root and every root has its own square, while no square has more than one root and no root more than one square.�

March 18, 2014 3



Proof. Denote by B the set of all squares. Consider the function f(x) = x2. We prove that it is
one-to-one and onto from N to B.

� one-to-one.
We need to show that n1=/ n2=) f(n1)=/ f(n2). Assume the contrary. Then we have

n1
2=n2

2=) (n1¡n2) (n1+n2)= 0=)n1¡n2=0 (2)

since n1;n22N=)n1+n22N and therefore n1+n2=/ 0. Thus we have reached contradiction.

� onto.
For any m2B, by de�nition of B we have m=n2= f(n) for some n2N. �

Exercise 2. Prove that the cardinality of the set of even numbers is the same as that of the odd numbers.

Example 6. (¡1; 1)�R.

Solution. We de�ne f : (¡1; 1) 7!R as

f(x)=

8>>><>>>:
0 x=0
1

x
¡ 1 x> 0

1

x
+1 x< 0

: (3)

Clearly f is one-to-one. To see that it is onto, take any y 2R.

� If y=0, then y= f(0);

� If y > 0, then y+1> 1=) 1

y+1
2 (0; 1)=) y 2 f((¡1; 1)) since f

�
1

y+1

�
= y.

� If y < 0, then 1¡ y > 1=) 1

y¡ 1 2 (¡1; 0)=) y 2 f((¡1; 1)).

Therefore f is a bijection and the conclusion follows.

Definition 7. (Finite set) Let A be a set. We say A is �nite if and only if there is n2N such
that A�f1; 2; :::; ng. Otherwise we say A is in�nite. In the �rst case we denote jAj=n.

Exercise 3. Let jAj=m; jB j=n with m; n2N and m=/ n. Prove that A�B. (Hint:3 )

Proposition 8. Let A be �nite and B in�nite. Then A�B.

Proof. Assume otherwise. Then there is a bijection g:A 7!B. Now as A is �nite, there is n 2N
and a bijection f : f1; 2; :::; ng 7!A. Let h := g � f : f1; 2; :::; ng 7!B. Then h is a bijection and B is
�nite. Contradiction. �

Exercise 4. (Sibley: Foundation) Critique the following �proof� that N is �nite.

Proof. Let P (n) be the statement that the set f1; :::; ng is �nite. It is easy to prove through induction that all
P (n) are true. Therefore N is �nite. �

(Hint:4 )

Exercise 5. Prove the following through explicit construction of the bijection:

a) [0; 1)� [0;1);

b) [0; 1]� [2; 4];

c) N�fn2Njn eveng;

3. Obviously the conclusion holds for m= 1. Assume the contrary. Let m0> 1 be the smallest natural number such that
there is jAj=m0 and jB j=n0>m0 such that A�B. Argue that this contradicts the minimality of m0.

4. Induction can prove P (n) is true for every n2N but this does not mean P (1) is true.
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d) N�fp2Nj p primeg;

e) N�Z.

(Hint:5 )

Definition 9. Let A; B be sets. We say the cardinality of A is smaller than that of B, denoted
A.B, if and only if there is a one-to-one function f :A 7!B. If A.B and A�B, then we say the
cardinality of A is strictly smaller than that of B.

Exercise 6. For any sets A; B, if A�B then A.B. (Hint:6 )

1.2. The Schröder-Bernstein Theorem
Intuitively, two sets having equal cardinality have the same �number� of elements. Thus for each set
A, we would like to assign a (possibly in�nite) �cardinal number� jAj to it to denote its cardinality.
When the set is �nite, the task is easy, our �cardinal number�s are simply natural numbers. On
the other hand, for in�nite sets the situation gets misty. We can of course play the game of just
dictating:

Call the cardinality of A a cardinal number, denote it by jAj.
But the real question is, suppose we do that, then what are the properties of such new, trans�nite

number? In particular, if we naturally denote jAj6 jB j()A.B, do we have

jAj6 jB j; jB j6 jAj=)jAj= jB j? (4)

That this indeed holds is guaranteed by the following theorem, which may be the most useful
theorem in proving cardinal relations.

Theorem 10. (Schröder-Bernstein) 7Let A;B be two sets. If A.B and B.A then A�B.

Proof. (from Rotman-Kneebone)
We �rst claim a lemma:

Lemma 11. Let A be any set, and let f : P(A) 7! P(A) be such that X � Y =)
f(X)� f(Y ). Then there is T �A such that f(T )=T.

Proof. Set

S := fXjX �A;X � f(X)g: (5)

Then

T :=[X2SX: (6)

We will prove that f(T )=T .

� T � f(T ). Let X 2 S be arbitrary. We have X � f(X) � f(T ). Therefore
T � f(T ).

� f(T ) � T . Since T � f(T ) we have f(T ) � f(f(T )), that is f(T ) 2 S.
Consequently by de�nition of T , f(T )�T . �

Nowe we prove the theorem.

5. 1

1¡ x
¡ 1; 2 (x+1); n 7! 2n; n 7! pn; 2; 4; 6; ::: maps to N, 3; 5; 7; ::: maps to ¡N, 1 maps to 0.

6. f(x) =x.

7. Felix Bernstein (1878 - 1956) was a student in Cantor's seminar.
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Siner A.B there is f :A 7!B and similarly there is g:B 7!A. Now we de�ne F :P(A) 7!P(A)
through

F (X) :=A¡ g(B ¡ f(X)): (7)

Then for any X � Y we have F (X) � F (Y ) and it follows from the Lemma 11 that there is T
satisfying F (T )=T , that is T =A¡ g(B ¡ f(T )), or

g(B ¡ f(T ))=A¡T : (8)
Thus the bijection is given by

x2A 7!
(
f(x) x2T
g¡1(x) x2A¡T (9)

and the proof ends. �

Remark 12. Note that the di�culty in proving this theorem is �intrinsic�, in the sense that it is very
hard to reduce it to a highly related while essentially �nite problem. One is forced to think in�nitely.

Remark 13. The basic idea of this proof can be understood as follows. Note that

F (?)=A¡ g(B)�?; F (A)=A¡ g(B ¡ f(A))�A: (10)

Therefore when X �expands� from ? to A, F (X) �expands� from some set �larger than� ? to some
other set �smaller than� A. Thus intuitively, at some point during this �expansion�, X �catches up�
with F (X). In other words there should be a T satisfying F (T )=T .

Exercise 7. Let f : [0; 1] 7! [0; 1] be continuous. Assume f(0) > 0, f(1) 6 1, then there is t 2 [0; 1] such that
f(t)= t. (Hint:8 )

Remark 14. The following proof from (Breuer: Introduction) may be easier to understand.

It is clear that there is C �A such that A�C. On the other hand there is F �A
such that F � B. Further we have C � F � A. Now write A = C [ D [ E where
F =C [D. Then we have

C =C1[D1[E1 (11)

such that C�C1;D�D1;E�E1. Continuing we have a chain. Now denote G :=\Cn.
We have

A=G[D[E [D1[E1[ ��� (12)
On the other hand

F =G[D[E1[D1[ ��� (13)

and we have found our one-to-one correspondence!

Exercise 8. Represent the �xed point T in Lemma 11 using G;Dn; En. (Hint:9 )

Exercise 9. Let A=B=[0; 1] and let f(x)= g(x)=x/2. Obtain the bijection explicitly.

Exercise 10. Assume jAj< jB j< jC j. Does it follow that jAj< jC j? Justify your claim.

Notation 15. We will follow the tradition and use German letters a; b; c; d;m; n; p; q; ::: to denote
cardinal numbers.

8. Intermediate value Theorem applied to f(t)¡ t.
9. G[D1[D2[ ���
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2. Countable Sets

2.1. Countable sets

Definition 16. (denumerable; countable) A set is A is denumerable if and only if A�N. A
set is countable if and only if it is either �nite or denumerable.

Notation 17. In this section we will denote n := jNj (traditionally German letters are used).

Note that it is implied in this de�nition that N is the �smallest� in�nite set. Therefore we need
the following theorem to guarantee the consistency of the de�nition.

Theorem 18. Let A be denumerable. Let B �A. Then B is either �nite or denumerable.

Proof. Assume B is in�nite, we prove that B is denumerable. Since B �A�N, we have B .N.
The conclusion would follow from Schröder-Bernstein once we prove the existence of a one-to-one
mapping N 7!B.

Since A�N, there is a bijection g:A 7!N. Thus g(B)�N could be written as an increasing
sequence b1<b2< ���. Now we de�ne

f :N 7!B f(n) := g¡1(bn): (14)

Clearly this mapping is one-to-one and we have N.B. By Schröder-Bernstein N�B. �

From the above theorem we see that any in�nite set A satis�es A&N. Thus we will also denote
@0 := n. Here @ is a Hebrew letter and pronounced �aleph�.

2.2. Operations on countable sets

Theorem 19. N�N�N. Furthermore, N�N� ��� �N (n times).

Proof. We order elements in N�N as

(1; 1); (1; 2); (2; 1); (1; 3); (2; 2); (3; 1); ::: (15)

and construct a bijection.
On the other hand, we can construct two one-to-one functions:

f :N 7!N�N; f(n) := (n; 1) (16)

and

g:N�N 7!N; g(m;n) := 2m 3n: (17)

Now the conclusion follows from Schröder-Bernstein. �

Exercise 11. Prove N�N�N directly though f(m; n) := 2m¡1 (2n¡ 1).

Exercise 12. Prove N�N�Q. (Hint:10 )

Exercise 13. Prove that Q�Q�N. (Hint:11 )

10. Order N�Q as (1; r1); (1; r2); (2; r1); :::

11. Order (r1; r1); (r1; r2); (r2; r1); :::
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Theorem 20. Let A1; :::; An be countable. De�ne A :=[k=1n Ak. Then A is countable.

Proof. De�ne B1 :=A1; B2 :=A2¡A1; B3 :=A3¡ (A1[A2); :::; Bn :=An¡ (A1[ ��� [An¡1). Then
clearly B1; :::; Bn are disjoint and still countable.

Without loss of generality, we assume B1; :::; Bn are all denumerable that is none of them is
�nite. Thus we have bijections f1; :::; fn satisfying fk:Bk 7!N. Now we construct

g:A 7!N�N; g(x) := (k; fk(x)) for x2Bk: (18)

Clearly g is one-to-one and therefore A .N�N�N. On the other hand it is clear that N. A.
Thus by Schröder-Bernstein theorem we conclude A�N and is thus countable. �

Exercise 14. Prove the above theorem without assuming B1; :::; Bn are all denumerable. (Hint:12 )

Exercise 15. (Sibley:Foundation) What is wrong with the following proof of �all in�nite sets have the same
cardinality�?

Let A= fa1; a2; :::g; B= fb1; b2; :::g. Then f(an)= bn is the desired bijection.

(Hint:13 )

2.3. A �rst encounter with Axiom of Choice
�At �rst it seems obvious, but the more you think about it, the stranger the deductions from this

axiom seem to become; in the end you cease to understand what is meant by it.�
�� Bertrand Russell commenting on Axiom of Choice.

Axiom of Choice. Given any family of nonempty sets fAi: i2 Ig where I is any
set, there is a function f : I 7![Ai such that f(i)2Ai.

Whenever we pick exactly one element from every set of a collection of sets, but do not give
an explicit rule of how to choose this �representative� element for every set, we are applying
Axiom of Choice. Note that this �rule� must enable us to pick the elements all at the same time.
In particular, when we are saying

�take r1 so that ..., then take r2 so that ..., then take r3 so that ..., and so on�

we are using Axiom of Choice, as the elements are chosen one by one, not at the same time.
Put it bluntly, most of our proofs involving in�nitely many objects relies on Axiom of Choice.

When is Axiom of Choice used?

Exercise 16. (Sibley:Foundation) For each family of sets, give, if possible, an explicit rule to pick one element
from each set. (If you can give such a rule, you don't need the Axiom of Choice.)

a) f[a; b]: a; b2R; a< bg;

b) f(a; b): a; b2R; a< bg;

c) All non-empty subsets of R.

d) All �nite non-empty subsets of R.

e) All countable nonempty subsets of R.

f) All nonempty subsets of Z.

g) fPn:n2Ng where Pn is the set of all polynomials of degree n.

12. Thus some of the Bk's are �nite.

13. To list A; B as such, one need to �rst assume that A�N; B�N.
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h) fFr;s: r; s2Rg where Fr;s is the set of all functions f :R 7!R such that f(r)= s.

(Hint:14 )

Theorem 21. Let An, n2N be countable sets. Then [n=11 An is countable.

Proof. Naïvely we would do the following:

� First since each An is countable, we can list its elements in a row an1; an2; ::: and obtain the
following in�nite matrix:

a11 a12 ���
a21 a22 ���
��� ��� ���

(19)

� Now simply delete all the duplicate entries. It is clear that [n=11 An . N � N and the
conclusion follows from Schröder-Bernstein.

In the above naïve argument we in fact applied Axiom of Choice twice. In the �rst step we picked
in�nitely many bijections simultaneously, while in the second step we picked simultaneously one
element from each set of duplicate entries. �

Exercise 17. Assume I�N. Let Ai be de�ned for each i2 I . Then [i2IAi is countable. (Hint:15 )

Exercise 18. Do we really need Axiom of Choice in the second step? (Hint: 16)

Example 22. A number is called �algebraic� if and only if it is a solution to an algebraic equation

anx
n+ ���+ a1x+ a0=0 (20)

with an; :::; a02Z and an=/ 0. Let A be the set of all algebraic numbers, then A�N.

Proof. For any equation

anx
n+ ���+ a1x+ a0=0 (21)

with an; :::; a02Z and an=/ 0, de�ne its �height� to be

h :=n+ janj+ ���+ ja1j+ ja0j: (22)

Now de�ne

Ak := fr 2Cj r solves an equation with height kg: (23)

Clearly each Ak is �nite and thus countable. The conclusion now follows. �

Exercise 19. Prove that a number is algebraic if and only if it solves

�nxn+ ���+�1 x+�0=0 (24)

with �n; :::; �02Q and �n=/ 0. (Hint:17 )

14. a; a+ b

2
, not possible, �rst one, not possible, not possible, �rst one according to lexicographic ordering, not possible.

(Note that these are just my opinion)

15. Let r: I 7!N be a bijection.

16. Seems to me the 2nd application of AoC is not necessary. Since the whole thing can be well-ordered, we could simply
pick the �rst one.

17. Write each �k=
pk
qk
. Multiply the equation by

Q
k=0
n qk.
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3. Uncountable Sets

3.1. The continuum

Definition 23. A set A is uncountable if and only if it is not countable, that is if and only if
jAj> n=@0.

The existence of uncountable set is a highly non-trivial fact and nobody truly realized it before
Cantor.

Theorem 24. [0; 1] is uncountable.

Proof. Assume the contrary. Then we have

[0; 1]= fx1; x2; :::g (25)
with i=/ j=)xi=/ xj.

Now we de�ne a sequence of nested intervals as follows. First divide [0; 1] to [0; 1/3] [ [1/3;
2/3] [ [2/3; 1]. At least one of the three intervals does not contain x1. Call it I1. Then we divide
I1 into three equal-size compact intervals. At least one of the three does not contain x2. Call it I2.
And so on.

Thus we have a sequence of nested intervals I1� I2� I3� ��� satisfying

jInj=3¡n; xn2/ In: (26)

By the Nested Intervas Theorem, there is c2 [0; 1] such that

c2\n=11 In: (27)

By assumption there is n02N such that c=xn0. But then c2/ In0=) c2/ \n=11 In. Contradiction. �

Exercise 20. Prove that R is uncountable. (Hint:18 )

Exercise 21. Prove that there exists a real number that cannot be described by words or formulas. (Hint: 19 )

Notation 25. We will denote c := jRj. We have just proved that @0= n< c.

Remark 26. The Continuum Hypothesis (CH) states that there is no set A satisfying n< jAj<
c. Thanks to works by Kurt Gödel and Paul Cohen, it has been known since the 1960s that,
roughly speaking, CH is independent of other parts of mathematics � it cannot be proved, and
including it would not cause any new contradiction. More speci�cally, Gödel prove the latter through
elaborate recursive construction, while Cohen solved the whole problem by inventing a new, powerful
technique called �forcing�.

Remark 27. An alternative proof is as follows. Instead of [0; 1], we prove (0; 1] is uncountable.
Exercise 22. Prove that the uncountability of (0; 1] implies that of [0; 1].

Proof. Every 0 < x 6 1 can be uniquely written as a non-terminating decimal 0:x1x2���. Assume
(0; 1] is countable. Then its elements can be listed as

0:a11a12a13���
0:a21a22a23���
0:a31a32a33���
���

(28)

Now de�ne
b=0:b1b2��� (29)

18. R& [0; 1].
19. Possible words and formulas a countable.
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where

bn=

�
1 ann=/ 1
2 ann=1

: (30)

We see that b cannot be in the list. Contradiction. �

Exercise 23. What can go wrong if we de�ne bn=(ann+1) mod 10? (Hint:20 )

Example 28. R¡N�R.

Proof. Clearly R¡N.R. Now all we need is a one-to-one mapping from R to R¡N. Once this
is done the conclusion follows from Schröder-Bernstein.

Denote A: =
�
n 2
p
jn2N

	
. We de�ne

f :N 7!A f(n)= (2n+1) 2
p

; (31)

g:A 7!A g
¡
n 2
p �

=2n 2
p

; (32)

Then we de�ne h:R 7!R¡N as

h(x) :=

8<: f(x) x2N
g(x) x2A
x otherwise

: (33)

Clearly h is one-to-one. �

Exercise 24. Prove that R¡Q�R. (Hint:21 )

More generally, we have

Theorem 29. Let A be such that jAj> n. Let B �A be countable. Then A¡B�A.

Proof. First assume B is denumerable, that is B�N. Since jAj> n, A¡B is in�nite. Therefore
there is C �A¡B such that C�N.

Now let f ; g be two bijections from N to B;C respectively. We de�ne

h:A 7!A¡B h(a) :=

8<: a a2A¡B ¡C
g(2n) a= g(n)2C
g(2n+1) a= f(n)2B

: (34)

Thus h is one-to-one and A.A¡B. Since A¡B.A is obvious, we have A¡B�A by Schröder-
Bernstein. �

Exercise 25. Let A be in�nite and B be countable. Then A[B�A. Explain why this is not equivalent to the
above theorem. (Hint:22 )

3.2. Cardinality of RN

�I see it, but I don't believe it.�
�� Georg Cantor, 1874, in a letter to Richard Dedekind, on discovering spaces of di�erent

dimension may in fact have the same number of points and thus be indistinguishable as sets. 23

20. We may get a new sequence of digits but it may not be a new real number, as decimal representation is not unique.

21. A=Q 2
p

:=
�
r 2
p
j r 2Q

	
.

22. jAj>nmay not hold.

23. (Vilenkin: Story) �Cantor searched for three years (from 1871 to 1874) for a proof that it was impossible to set up a one-to-
one correspondence between the points of the segment and the points of the square.�
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Theorem 30. R�R�R.

Proof. It su�ces to prove (0; 1)� (0; 1)� (0; 1).
We will construct a one-to-one mapping from (0;1)� (0;1) to (0;1). For any (x; y)2 (0;1)� (0;

1), we write their unique in�nite decimal expansions (that is we choose 0::::::99999:::: instead of
0::::::0000::::) :

x=0:x1x2:::; y=0:y1y2���: (35)
Now we map

(x; y) 7! 0:x1y1x2y2:::::: (36)

It is clear that this is one-to-one. Now the conclusion follows immediately from Schröder-Bern-
stein. �

Exercise 26. Prove (0; 1)�R and justify the above strategy of proving (0;1)� (0; 1)� (0; 1) (instead of proving
directly R�R�R). (Hint:24 )

Remark 31. A bit conter-intuitively, the above mapping is not a bijection. In fact this was exactly
what Cantor did in his �rst �proof� of R�R�R that he communicated to Richard Dedekind in
1877. Later in June 1877 Dedekind noticed a �aw in the proof caused by the ambiguity of decimal
representation of numbers. For example, if we require that no number should end in 00::::, then
there is no pair (0; 1)� (0; 1) that is mapped to the number

0.13101010::::2 (0; 1): (37)

This �aw turned out to be �xable.
The �x is as follows. We divide each decimal into �blocks�: Each non-zero digit that is not

preceded by zero is to form a block by itself, but any ruin of consecutive zeros is to form a single
block with the non-zero digit that comes immediately after it. Thus

x=0:X1X2:::; y=0:Y1Y2::: (38)

where each Xi (or Yi) is a �block�. Finally we de�ne

(x; y) 7! 0:X1Y1X2Y2::::: (39)

and this gives the desired bijection.

Remark 32. The claim also follows from Peano's construction of a �square-�lling curve�, a function
f(x): [0;1] 7! [0;1]� [0;1] that is continuous and onto, about which Henri Poincaré commented �How
was it possible that intuition could so deceive us?�.

Exercise 27. Find any description of the construction of �square-�lling curves� and try to prove that the resulting
function is continuous.

Exercise 28. Assuming the existence of Peano's curve. Prove that [0; 1]� [0; 1]� [0; 1]. Does Axiom of Choice
play a role in the proof? (Hint:25 )

Note that f(x) is not one-to-one. It turned out that f : [0; 1] 7! [0; 1]� [0; 1] that is at the same
time continuous and bijective does not exist. Thus the intuition of dimension is not totally deceptive
after all.

3.3. Power sets and hierarchy of cardinals

Definition 33. (Power sets) Let A be a set. Then its power set is de�ned as

P(A) := fBjB �Ag: (40)

24. (0; 1)� (0; 2)� (¡1; 1)�R.

25. Yes.
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Example 34. Let A= f1; 2; 3g. Then

P(A)= f?; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg: (41)

Exercise 29. Let A be �nite. Then P(A) is also �nite. Furthermore jP(A)j=2jAj.

Exercise 30. Let A be �nite. Consider the set of all functions from A to f0; 1g:
B := ff :A 7! f0; 1gg: (42)

Then B�P(A). (Hint:26 )

Theorem 35. A�B=)P(A)�P(B).

Proof. Exercise. �

Exercise 31. Prove that A.B=)P(A).P(B). (Hint:27 )

Theorem 36. P(N)�R.

Proof.

� P(N).R. We de�ne f :P(N) 7!R as follows.

f(?)= 0; (43)

f(fn1; :::; nk; :::g)= 0:a1a2a3��� (44)

where

an=

�
1 9k 2N; n=nk
0 otherwise

: (45)

It is clear that f is one-to-one and the conclusion follows.

� R.P(N).
It su�ce to proveR+¡Q+�P(Q+). Recalling the construction ofR through Dedekind's

cuts, we see that there is a one-to-one mapping from R+ to P(Q+).

Now the conclusion follows from Schröder-Bernstein. �

Theorem 37. There is no largest cardinal.

Proof. For any set A we de�ne its �power set� P(A) := fBjB �Ag. We prove that jP(A)j> jAj.
The best way to present this may be the following. Clearly

P(A)�C := fcharacteristic functions on Ag: (46)

Now assume that there is a bijection A 7!C: a 7! fa. De�ne

':A 7! f0; 1g (47)

through

'(a) := 1¡ fa(a): (48)

Then there is b 2 A such that ' = fb. But then '(b) = fb(b) = 1 ¡ fb(b) =) fb(b) = 1/2.
Contradiction! �

26. f 2B maps to f¡1(1)�A.
27. A.B then there is one-to-one f :A 7!B. Thus P(A)�P(f(A)). But there is a one-to-one mapping P(f(A)) 7!P(B):

F (C)=C.
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4. Advanced Topics, Notes, and Comments

4.1. Cardinal Arithmetics

4.1.1. Arithmetic operations

Definition 38. (Addition) Let A; B be disjoint. Let the cardinal numbers m := jAj, n := jB j.
Then we de�ne

m+ n := jA[B j: (49)

Exercise 32. Prove that the above de�nition does not depend on the choices of the speci�c sets A; B.

Exercise 33. Let m; n be arbitrary cardinal numbers. Prove that m+ n>m.

Example 39. c+ n= c.

Proof. Take A= [0; 1), B= f2¡n¡1jn2Ng. Then we have

c+ n= jA[B j6 jRj= c: (50)

Thus ends the proof as the other direction follows from the above exercise. �

Definition 40. (Subtraction) Let B �A. Let the cardinal numbers m := jAj, n := jB j. Then if
m> n we can de�ne

m¡ n := jA¡B j: (51)

Exercise 34. c¡ n= c.

Exercise 35. Let m2N. Then n¡m= n.

Exercise 36. Explain why the assumption m> n is necessary.

Definition 41. (Multiplication) Let the cardinal numbers m := jAj, n := jB j. Then we de�ne

m � n := jA�B j: (52)

Exercise 37. Show that this de�nition naturally generalizes to the situation of �nite product and powers.

Exercise 38. Prove that when m; n are �nite the de�nition reduces to that of usual multiplication.

Exercise 39. Prove that c2= c; n4= n.

Exercise 40. Prove that c � n= c.

Exercise 41. Let m be a cardinal number and n2N. Prove that m �n=m+ ���+m (n terms).

Definition 42. (Exponential) Let the cardinal numbers m := jAj, n := jB j. De�ne C to be the
set of all functions from B to A:

C := ff :B 7!Ag: (53)
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Then de�ne

mn :=jC j: (54)

Exercise 42. Notice that it is B 7!A instead of A 7!B. Work on �nite sets to make sure you understand why.

Exercise 43. Prove that 2n= c.

Exercise 44. Prove that 2c> c.

Exercise 45. Prove that nn= c.

Exercise 46. Prove that the set of all real sequences has cardinality c, that is cn = c. Then prove that the set
of all real functions has cardinality 2c.

Exercise 47. What is the cardinality of the set of all real continuous functions?

Exercise 48. What is the cardinality of the set of all complex analytic functions?

4.1.2. Cardinal arithmetics

The following rules are satis�ed by cardinal numbers. The proofs are left as exercises.

� m � (n+ p)=m � n+m � p;

� m(n+p)=mn �mp;

� (m � n)p=mp � np;

� (mn)p=m(np);

Exercise 49. Let m; n; p be cardinal numbers. Assume m6 n. Prove

m+ p6 n+ p; m � p6 n � p; mp6 np; pm6 pn: (55)

Theorem 43. (Cantor) Let m be any cardinal number. Then 2m>m.

Proof. We have done that already. Exercise. �

Corollary 44. Let W be the collection of all sets. Then W is not a set.

Proof. Assume otherwise. Denote w := jW j. Then P(W ) has cardinality 2w>w. One the other
hand, each member of P(W ), being a set, is also a member of W , which includes all possible sets.
This means P(W )�W and consequently 2w6w. Contradiction. �

Example 45. 2c= cc.

Proof. Obviously 2c6 cc. For the other direction, we have

cc= jfall functions on Rgj6 jP(R�R)j=2jR�Rj=2c�c=2c: (56)

Thus the proof after application of Schröder-Bernstein. �
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5. More Exercises and Problems

5.1. Basic exercises

5.1.1. Comparing sizes of sets

Exercise 50. Let A; B be sets and let j�j denote cardinality. Prove jA�B j= jB �Aj. (Hint:28 )

Exercise 51. Let A; B;A1; B1; C be sets. Assume A�A1; B�B1, then

A�B�C =)A1�B1�C: (57)

(Hint:29 )

Exercise 52. Let A; B;C be sets. Prove that

a) A.A;
b) (A.B) and (B.C)=)A.C.

Do we have (A.B;A�B) and (B.C) =) (A.C;A�C)? Justify. (Hint:30 )

Exercise 53. (Sibley:Foundation) Critique the following �proof� of N� (0; 1).

Clearly N. (0; 1). For the other direction, list all numbers of (0; 1) as follows. First 0.1¡ 0.9,
then 0.01¡0.99, then 0.001¡0.999, and so on. Clearly this gives a one-to-one function f : (0;1) 7!N
and consequently (0; 1).N. By Schroeder-Bernstein we conclude that N� (0; 1).

(Hint:31 )

Exercise 54. (Sibley:Foundation) Prove that f(x; y)jx2+ y26 1g� [¡1; 1]2. (Hint:32 )

5.1.2. Countable sets

Exercise 55. Prove the following:

a) N�N[f0g;

b) Let X be any in�nite set and y 2/ X. Prove X�X [fyg.

c) Let X be any in�nite set that does not contain any natural number. Prove X�X [N.

(Hint:33 )

Exercise 56. Let E �R be open. Prove that E is the union of countably many open intervals. (Hint: 34 )

Exercise 57. (Sibley: Foundation) Let Sn be the set of all subsets of N that have size n. For instance,
f3; 7g2S2; f1; 4; 9g2S3.

a) Prove that S2 is countable;

b) Prove for all n2N that Sn is countable;

c) Prove that the set of all �nite subsets of N is countable.

d) What about the set of all subsets of N? Can you prove that it is countable?

(Hint:35 )

Exercise 58. Let A be the set of all �nite rational sequences. Prove that A�N.

Exercise 59. (Sibley:Foundation) What is wrong with the following proof of N�N�N?

28. (a; b) 7! (b; a) is bijection.

29. (a; b) 7! c becomes (f(a); g(b)) 7! c.

30. Yes. Schröder-Bernstein.

31. This only gives 1-1 mapping from all rationals ending with 000:::: to N.

32. For &, use polar coordinate for say f1/46x2+ y261g.
33. Show that any in�nite set has a subset �N.

34. Consider all (an; bn)�E where an; bn are rational.

35. S2.N�N; S3.N�N�N:::
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Clearly N.N�N. Now for (a1:::an; b1:::bn)2N�N, we de�ne

f(a1:::an; b1:::bn)=a1b1���anbn (58)

For example f(314; 676) = 361746. Clearly f is one-to-one. Now the conclusion follows from
Schröder-Bernstein. (Hint:36 )

5.1.3. Uncountable sets

Exercise 60. What is the cardinality of the set of transendental numbers? Justify. (Math317 2014 HW5)

Exercise 61. What is the cardinality of QR? Justify. (Hint:37 )

Exercise 62. (Sibley:Foundation) Let D= fx2 (0; 1)j the decimal expansion of x contains only odd digitsg.
Find the cardinality of D and justify your answer. (Hint:38 )

Exercise 63. Let S be the set of all bijections from N to N. Prove that jB j= c, that is B�R. (Hint:39 )

Exercise 64. Let A be the set of all characteristic functions on R; Let B be the set of all continuous functions
on R. Prove that jAj=2c; jB j= c. (Hint:40 )

Exercise 65. What is the cardinality of all in�nitely di�erentiable functions from R to R? (Hint:41 )

5.2. More exercises
Exercise 66. Let S be the set of all bijections from R to R. What is the cardinality of S? Justify. (Hint:42 )

Exercise 67. (Baby Rudin) E �RN is called �perfect� if and only if

i. E is closed;

ii. Every point in E is a limit point of E.

Prove that a perfect set must be uncountable. Then show that the uncountability of [0; 1] as well as the Cantor
set follows from this. (Hint:43 ) (Math317 2014 HW4)

Exercise 68. Let the equivalence relation � be de�ned as

x� y() x¡ y 2Q: (61)

36. What about 37 and 2456?

37. QR &P(R) is obvious. On the other hand QR . the set of all functions R 7!R . all subsets of R�R �P(R�R).
But R�R�R.

38. Note that two decimals containing only odd digits must represent two di�erent numbers. Thus the answer is 5N which
satis�es R� 2N.5N.P(N�N)�P(N)�R.

39. For every 0-1 sequence fang (that is an takes only 0 or 1), we can de�ne a bijection f as follows: DivideN into in�nitely
many blocks f0; 1g; f2; 3g; f4; 5g; ::: Then for every n2N,

� If an=1, then f(2n)= 2n+1; f(2n+1)= f(2n);

� If an=0, then f(2n)= 2n, f(2n+1)= f(2n+1).

Clearly f is a bijection. Therefore B&f0; 1gN�R.
On the other hand, identifying each function with its graph, we have B �P(N�N)=)B.P(N�N)�P(N)�R.

40. A�P(R); B�RQ�RN�R.

41. Obviously it is no more than the number of continuous functions. On the other hand, considering

fx(t) :=

(
e¡1/(x¡t)

2

x=/ t
0 x= t

(59)

we see that it is at least as many as R.

42. On one hand it is .P(R�R)�P(R); On the other hand for every A�R+, we construct bijection

f(x)=

8><>:
x x or ¡x belongs to A
¡x x or ¡x belongs to R+¡A
0 x=0

: (60)

Thus it is no less than P(R+)�P(R).
43. Assume the contrary. Try to construct nested intervals excluding all points.
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Then what is the cardinality of the quotient set R/�?

Exercise 69. Let a; b be in�nite cardinals with a6 b. Find a+ b; a � b; ab; ba.

Exercise 70. (Sibley:Foundation) Let A; B be sets with A�B. Let jAj= a; jB j= b with a< b. De�ne

b¡ a := jB¡Aj: (62)

You need to justify all your claims.

a) Prove that the de�nition is consistent.

b) Show that the de�nition is not consistent anymore if a< b is relaxed to a6 b.

c) Let n2N. Find @0¡n.

d) Find c¡@0.

Exercise 71. Let m be any trans�nite cardinal number. Prove that

m+m=2 �m; m �m=m2: (63)

Does it hold that m+m=m � 2?

Exercise 72. Let a; b; c be cardinals. Prove

a � b= b � a; (a � b) � d= a �(b � d); a � (b+ d)= a � b+ a � d: (64)

5.3. Problems
Problem 1. (Sibley:Foundation) Let P0 :=N and de�ne Pn recursively by Pn+1 :=P(Pn).

a) Show that the cardinality of S0 :=[n2NPn is larger than any jPnj.

b) What if we apply the same construction to S0?

Problem 2. Is it true that P(A)�P(B)=)A�B?

Problem 3. (Baby Rudin) A point x 2RN is called a condensation point of a set E if and only if for every
� > 0, E \B(x; �) is uncountable.

Let E �RN be uncountable. Let P be the set of all condensation points of E. Prove

a) P is perfect;

b) P c\E is countable.

(Hint: 44)

Problem 4. Richard Dedekind (1831 - 1916) de�ned �in�nite set� as follows.

A is in�nite if and only if there is B (A, such that A�B.

Prove that this de�nition is equivalent to De�nition 7. Then use this de�nition to prove that N, Q, R are all
in�nite.

Problem 5. The following is due to Ramsey.

Let D be denumerable (that is countable and in�nite). Let E := ffa; bgj a; b2Dg be the set of
un-ordered pairs of D. Let A[B be a partition of E, that is E=A[B;A\B=?. Then for any
partition A[B there is a denumerable subset D 0�D such that

E 0 := ffc; dgj c; d2D0g (65)

is either a subset of A, or a subset of B.

44. Consider all open balls with rational centers and radii. Then consider those balls sharing with E only countably many
points.
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