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�It was not accidental that the notion of function generally accepted now was �rst formulated
in the celebrated memoir of Dirichlet (1837) dealing with the convergence of Fourier series; or that
the de�nition of Riemann's integral in its general form appeared in Riemann's Habilitationsschrift
devoted to trigonometric series; or that the theory of sets, one of the most important developments of
nineteenth-century mathematics, was created by Cantor in his attempts to solve the problem of the sets
of uniqueness for trigonometric series. In more recent times, the integral of Lebesgue was developed in
close connexion with the theory of Fourier series, and the theory of generalized functions (distributions)
with that of Fourier integrals.�

�� Antonio Zygmund, 19581

1. Introduction

1.1. Trigonometric series

Definition 1. (Trigonometric series) A trigonometric series is a special type of in�nite series
of functions

a0
2
+

X
n=1

1 n
an cos

n�x
L

+ bn sin
n�x
L

o
: (1)

Definition 2. (Periodic function) A function f :R 7!R is said to be periodic if there is T > 0
such that f(x+T )= f(x) for all x2R. Such T is called a period of f. If L :=minfT jT is a period
of f(x)g exists and is positive, we call L the fundamental period.

Remark 3. When we say �the period of f is ...� we often mean fundamental period. For example,
the period of sinx is 2 �. On the other hand, when we say f(x) is a 2 �-periodic function, we often
mean 2� is one period of f .

Exercise 1. What would happen if we allow T =0 in the de�nition above? (Hint:2 )

Exercise 2. What is the period of sin
¡

3
p

x
�
? (Hint:3 )

Lemma 4. If f(x) = a0
2
+

P
n=1
1 �

an cos
n�x

L
+ bn sin

n�x

L

	
, then f(x) is periodic with 2L being a

period.

Proof. We have

f(x+2L) =
a0
2
+

X
n=1

1 �
an cos

n� (x+2L)
L

+ bn sin
n� (x+2L)

T

�
=

a0
2
+

X
n=1

1 n
an cos

�
n�x
L

+2n�
�
+ bn sin

�
n�x
T

+2n�
�o

=
a0
2
+

X
n=1

1 n
an cos

n�x
L

+ bn sin
n�x
T

o
= f(x): (2)

1. In Preface to volume one of Trigonometric Series.

2. Every f(x) is periodic since f(x)= f(x+0) is always true.

3. 2�

3
p .
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Thus 2L is a period of f(x). �

Exercise 3. Must 2L be the fundamental period of f(x)? Justify your claim. (Hint:4 )

Note. In the following we will study the possibility of representing functions with trigonometric
series. From the above lemma it is clear that such functions must be 2L-periodic. Therefore in the
following we will use the same symbol f(x) to denote a function de�ned on [¡L; L) and f~(x), its
periodic extension to R:

f~(x)= f(x¡ 2 kL); x2 [2 kL; 2 (k+1)L): (3)

1.2. d'Alembert + Euler vs Bernoulli

1.2.1. One-dimensional wave equation

Imagine a perfectly elastic, stretched string initially lying motionless along the x-axis, with two ends
�xed at x=0 and x= l. Assume that the string has a uniform density � and a uniform tension T .
Now imagine the string was pulled a bit in to become y= f(x) at t=0 (keep the two ends �xed).
Then the string would obviously oscillate when t > 0. We denote its (time-dependent) position by
u(x; t), that is at time t0 the string's position is given by the curve y= u(x; t).

Since at time t=0, the string is at position y= f(x), we have u(x;0)= f(x). We further assume
that the string is still at t=0, thus @u

@t
(x; 0)=0. These two requirements are imposed at t=0, and

is thus called �initial conditions�.
On the other hand, assume we keep the two ends of the string �xed for all time, thus obtaining

the boundary conditions:

8t > 0; u(0; t)=u(l; t)= 0: (4)

Next we derive the partial di�erential equation that governs the motion of the string. For
simplicity we ignore gravity. We also assume that the string is pulled just a little bit so that the
tension T does not change. We study the motion of a small segment, from x to x+�x, of the string.
Newton's second law gives

(mass of the segment) � (vertical acceleration of the segment)= (vertical force) (5)

which translates to

��x
@2u

@t2
=T [sin (�(x+�x))¡ sin (�(x))]: (6)

where �(x) is the angle between the string and the x-axis at the point (x;u(x; t)). By our assumption
� is very small, therefore

T [sin (�(x+�x))¡ sin (�(x))]�T [tan (�(x+�x))¡ tan (�(x))]: (7)

Divide both sides by �x and taking limit �x¡! 0, we have

@2u
@t2

=
T
�
�
�
@(tan (�(x)))

@x

�
: (8)

4. cos (2 x).
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but from calculus we know that

tan (�(x))=
@u
@x
(x; t): (9)

Thus we have
@2u
@t2

=
T
�
� @

2u
@x2

: (10)

Since T ; �> 0 we can denote c2 := T/� and the equation becomes

@2u

@t2
= c2

@2u

@x2
: (11)

This is called the one-dimensional wave equation.

Remark 5. The physical meaning of c> 0 is the propagation speed of the waves along the string.

Summarizing, the position of the string, u(x; t), satis�es the following initial-boundary value
system:

@2u
@t2

= c2
@2u
@x2

8x2 (0; l);8t > 0; (equation) (12)

u(x; 0)= f(x);
@u
@t
(x; 0)= 0 8x2 [0; l]; (initial conditions) (13)

u(0; t)= u(l; t)= 0 8t > 0; (boundary conditions) (14)

1.2.2. d'Alembert's solution

In 17475, Jean Le Rond d'Alembert (1717 - 1783) solved (12 � 14) as follows.
First, through a change of variables, he obtained the following solution for (11) in

u(x; t)=�(x+ c t)+	(x¡ c t) (15)

where �;	 have continuous second-order derivatives. More speci�cally, he obained:

If u(x; t) is twice continuously di�erentiable in (x; t), then there are twice contin-
uously di�erentiable functions �(x) and 	(x) such that (15) holds.

Exercise 4. Prove the above claim. (Hint:6 )

Now the boundary and initial conditions become, for all x2 [0; 1] and t > 0,

�(x)+	(x)= f(x); c�0(x)¡ c	0(x)= 0; �(c t)+	(¡c t)= 0; �(1+ c t)+	(1¡ c t)= 0: (16)

After some algebra, d'Alembert obtained the solution as

u(x; t)=
F (x+ c t)+F (x¡ c t)

2
: (17)

5. J. le R. d'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration, Mémoires de l'Académie
Royale de Berlin, 3 (1747: publ. 1749), 214- 219.

6. Change of variable � := x+ c t; � := x¡ c t. Then (12) becomes @2u

@�@�
=0.
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where F (x) is obtained from f(x) through �rst extending f(x) to an odd function on [¡l; l], then
extending this odd function to a periodic function with period 2 l.

F (x) :=

�
f(x) x2 [0; l]
¡f(¡x) x2 [¡l; 0] and 8x2R; f(x+2 l)= f(x): (18)

Exercise 5. Obtain solution formula (17). (Hint:7 )

Naturally, d'Alembert required f(x) to be twice continuously di�erentiable. In fact he required
that f(x) can be extended periodically to a function that is twice continuously di�erentiable on the
whole real line R. This is a very restrictive requirement: For example a plucked violin string does
not satisfy it. Euler in 1748 tried to argue that the formula (17) still makes sense even when f(x)
fails to meet the requirement. d'Alembert disagreed.

1.2.3. Bernoulli's solution

In 1755, Daniel Bernoulli published a memoir8 claiming that every motion of the string can be
written as

u(x; t)=
X
n=1

1

cn sin
�
n�x
l

�
cos

�
n� c t
l

�
(19)

while cn satisfy

f(x)=
X
n=1

1

cn sin
�
n�x
l

�
: (20)

Exercise 6. Let u1(x; t); u2(x; t) satisfy (12 � 14) and let C1; C2 2 R. Prove that the linear combination
C1u1+C2u2 also satis�es (12 � 14).9

The idea is to write u(x; t) as sum of in�nitely many functions:

u(x; t)=
X
n=1

1
Xn(x)Tn(t): (21)

and require each Xn(x)Tn(t) to satisfy as much of (12 � 14) as possible.

Complete solutions to Exercises 7 � 11 can be found in any introductory book on partial
di�erential equations.

Exercise 7. Prove that if X(x)T (t) satis�es (12), then there is �2R such that

X 00(x)¡�X(x)= 0; T 00(t)¡ c2�T (t)= 0: (22)

Exercise 8. Prove that if furthermore we require X(x) T (t) to satisfy the boundary conditions (14), then the
only possible values of � are

�n=¡
�
n�

l

�
2

(23)

and for each �n, the solution for the X equation is given by

C sin
�
n�x
l

�
(24)

7. Full derivation can be found in any introductory PDE book.

8. D. Bernoulli, Ré�exions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémoires de
l'Académie de 1747 et 1748, Mémoires de l'Académie Royale de Berlin, 9 (1753:publ. 1755), 147 - 172.

9. Equations with such property are called �linear�. The understanding of linear partial di�erential equations have been
more or less complete now.
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where C 2R is arbitrary.

Exercise 9. Prove that for each �n, we have

Xn(x)Tn(t)= sin
�
n�x
l

�h
An cos

�
n c � t
l

�
+Bn sin

�
n c � t
l

�i
(25)

where An; Bn2R are arbitrary.

Exercise 10. Prove that if u(x; t) is given by (21), then

f(x) =
X
n=1

1

An sin
�
n�x

l

�
; (26)

0 =
X
n=1

1

Bn
n c �
l

sin
�
n�x
l

�
: (27)

Argue that this leads to Bernoulli's solution (19 � 20).

Exercise 11. Spot as many theoretical issues in the above as you can. What kind of theorems are needed to
settle all these issues?

Euler thought (19 � 20) are nonsensical, d'Alembert agreed, while Bernoulli wouldn't change his
mind.

1.3. Fourier's claim

Jean Baptiste Joseph Fourier (21 March 1768 � 16 May 1830)10, during his service under Napoleon
as Prefect of the Department of Isère in Grenoble, devoted his spare time to the study of the
propagation of heat.

Example 6. Consider a rod of length L lying along the x axis, with ends at 0 and L. Denote the
temperature at position x and time t by u(x; t). Let its temperature distribution at t=0 be f(x).
Assume that the temperature at both ends are kept at 0. Then u(x; t) satis�es

@u
@t
(x; t)=�

@2u

@x2
(x; t) 8x2 (0; L);8t > 0; (28)

u(x; 0)= f(x) 8x2 (0; L); (29)

u(0; t)=u(L; t)= 0 8t > 0; (30)

where �> 0.

Exercise 12. Derive (28 � 30).

Exercise 13. Solve (28 � 30) using Bernoulli's method.

In 1807 Fourier �nished a paper on the theory of heat, in which he sided with Bernoulli and
claimed that any function can be written as a trignometric series. His theory met much criticism
and had to wait till 1822 to be formally published in the form of the book Théorie analytique de la
chaleur.

The justi�cation and generalization of his claim would become the foundation of modern
analysis.

10. For more about Fourier's colorful life serving the Jacobins, Napoleon, and Louis XVIII, as well as his involvement in
the discovery of the Rosetta Stone, see Chapter 1 of (Elena:Evolution) .
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2. Calculation of Fourier Expansions

2.1. Formulas for expansion coe�cients

Assume that

f(x)=
a0
2
+

X
n=1

1 n
an cos

n�x
L

+ bn sin
n�x
L

o
: (31)

We would like to calculate an and bn.

The key property that makes calculation of Fourier expansion possible are the following orthog-
onality relations: Z

¡L

L

cos
�
n�x
L

�
dx=

Z
¡L

L

sin
�
n�x
L

�
dx=0; (32)

Z
¡L

L

cos
n�x
L

cos
m�x
L

dx=

�
L n=m
0 n=/ m

; (33)

Z
¡L

L

sin
n�x
L

cos
m�x
L

dx=0; (34)

Z
¡L

L

sin
n�x
L

sin
m�x
L

dx=

�
L n=m
0 n=/ m

: (35)

Exercise 14. Prove (33 � 35). (Hint:11 )

From these properties it is easy to calculate:

an=
1
L

Z
¡L

L

f(x) cos n�x
L

dx: n=0; 1; 2; ::: (37)

bn=
1
L

Z
¡L

L

f(x) sin
n�x
L

dx: n=1; 2; ::: (38)

Exercise 15. Certain assumptions have to be made to obtaining (37-38). Identify these assumptions. (Hint:12 )

Remark 7. These formulas were �rst derived by Leonhard Euler in 1777 (published in 1793).13

Exercise 16. (An ultimate exercise for constant-coefficient ODE) Formally �solve� the equation

y(x+2�)¡ y(x)= f(x) (39)

11. You need to know the following formulas:

cos (A�B) = cosA cosB � sinA sinB; sin(A�B)= sinA cosB � sinB cosA: (36)

12. Termwise integration. A su�cient condition is uniform convergence of the series in (31).

13. Remember that he was against Daniel Bernoulli's idea of representing functions by trigonometric series!
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to obtain (37-38) through the following argument due to Euler:

� Taylor expansion:

(2�) y 0(x)+
(2�)2

2!
y 00+

(2�)3

3!
y 000+ ���= f(x): (40)

This is a linear non-homogeneous equation of in�nite order.

� Solve the homogeneous part

(2�) y 0(x)+
(2�)2

2!
y 00+

(2�)3

3!
y 000+ ���=0 (41)

which is linear and constant-coe�cient to obtain general solution.

� Use undetermined coe�cients to solve the original equation.

� Try to use variation of parameters to solve the equation.

Definition 8. For any f(x) and any L > 0, we can calculate an; bn using ( 37-38) and obtain a
Fourier series

a0
2
+

X
n=1

1 n
an cos

n�x
L

+ bn sin
n�x
L

o
: (42)

This is called the Fourier expansion of f(x) on [¡L;L].

Remark 9. It is important to realize that the Fourier expansion of f(x) may or may not converge
to f(x). To emphasize this point, we avoid using equality and write

f(x)� a0
2
+

X
n=1

1 n
an cos

n�x
L

+ bn sin
n�x
L

o
: (43)

Remark 10. There is a subtle di�erence, �rst noticed and emphasized by Bernhard Riemann,
between �Fourier series� and �trigonometric series�. A Fourier series is automatically a trigonometric
series. However there are trigonometric series that cannot be obtained from and function f(x) and
the formulas (37-42), and thus are not Fourier series.

2.2. Examples

Example 11. Compute the Fourier series for

f(x)=x; ¡ �6 x<�: (44)

Solution. We have L=�. Now we compute the coe�cients.

� First

a0=
1
�

Z
¡�

�

xdx=0; (45)
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� Next

an =
1
�

Z
¡�

�

x cos (nx) dx

=
1
n�

Z
¡�

�

x dsin (nx)

=
1
n�

�
x sin (nx)j¡�� ¡

Z
¡�

�

sin (nx) dx
�

= 0: (46)

� Finally

bn =
1
�

Z
¡�

�

x sin (nx) dx

= ¡ 1
n�

Z
¡�

�

x dcos (nx)

= ¡ 1
n�

�
x cos (nx)j¡�� ¡

Z
¡�

�

cos (nx) dx
�

= ¡ 1
n�

[� (¡1)n¡ (¡�) (¡1)n]

= ¡2 (¡1)
n

n

=
2 (¡1)n+1

n
: (47)

Summarizing, the Fourier expansion for x is

x�
X
n=1

1
2 (¡1)n+1

n
sin (nx): (48)

Exercise 17. Find x02R such that

x0=/
X
n=1

1
2 (¡1)n+1

n
sin (nx0): (49)

(Hint:14 )

Example 12. Compute the Fourier series for

f(x)=

�
1 ¡26 x< 0
x 0<x< 2

: (50)

Solution. Clearly L=2 and n�x

L
becomes n�x

2
. We compute

� �rst

a0=
1
2

Z
¡2

2

f(x) dx=
1
2

Z
¡2

0

dx+
1
2

Z
0

2

x dx=2=) a0
2
=1; (51)

14. x0=��.
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� next

an =
1

2

Z
¡2

2

f(x) cos
�
n�x

2

�
dx

=
1
2

Z
¡2

0

cos
�
n�x
2

�
dx+

1
2

Z
0

2

x cos
�
n�x
2

�
dx

=
1
n�

sin
�
n�x
2

�
j¡20 +

1
n�

Z
0

2

x dsin
�
n�x
2

�
= 0+

1
n�

�
x sin

�
n�x
2

�
j02¡

Z
0

2

sin
�
n�x
2

�
dx

�
=

1
n�

2
n�

cos
�
n�x
2

�
j02

=
2

(n�)2
[(¡1)n¡ 1]; (52)

� and �nally

bn =
1

2

Z
¡2

2

f(x) sin
�
n�x

2

�
dx

=
1
2

Z
¡2

0

sin
�
n�x
2

�
dx+

1
2

Z
0

2

x sin
�
n�x
2

�
dx

= ¡ 1
n�

cos
�
n�x
2

�
j¡20 ¡ 1

n�

Z
0

2

xdcos
�
n�x
2

�
= ¡ 1

n�
[1¡ cos (¡n�)]¡ 1

n�

�
x cos

�
n�x
2

�
j02¡

Z
0

2

cos
�
n�x
2

�
dx

�
=

1
n�

[(¡1)n¡ 1]¡ 1
n�

�
2 (¡1)n¡ 2

n�
sin

�
n�x
2

�
j02

�
= ¡ 1

n�
[(¡1)n+1]: (53)

Summarizing, we have

f(x) =

(
1 ¡2<x< 0
x 0<x< 2

� 1 +
X
n=1

1
2

(n�)2
[(¡1)n ¡ 1] cos

�
n�x
2

�
¡ 1

n�
[(¡1)n +

1] sin
�
n�x
2

�
: (54)

Exercise 18. Calculate the Fourier expansion on [¡�; �] for

f(x)=

�
¡� ¡�6 x< 0
x 06 x<�

: (55)

(Ans: 15.)

Exercise 19. Prove the following: Let f(x)� a0

2
+

P
n=1

1 �
an cos

n�x

L
+ bn sin

n�x

L

	
on [¡L;L].

� If f(x) is odd, then all an=0;

� If f(x) is even, then all bn=0.

(Hint:16 )

15. ¡�

4
¡

P
n=1
1

n
2

(2n¡ 1)2� cos (2n¡ 1) x+
1¡ 2 (¡1)n

n
sinnx

o
.

16. Say f(x) is odd. Write
R
¡L
L

=
R
0
L
+
R
¡L
0 . Make a change of variable x=¡u in the second integral.
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3. Pointwise Convergence

Note. For simplicity of presentation, from now on we will restrict ourselves to the case L=�. Every
result proved in this case can be generalized straightforwardly to the general case.

Let f(x) be integrable on [¡�; �] and let a0
2
+

P
n=1
1 fan cos (n x) + bn sin (n x)g be its Fourier

expansion on [¡�; �], with

an=
1
�

Z
¡�

�

f(x) cosnx dx; bn=
1
�

Z
¡�

�

f(x) sinnx dx: (56)

In the following discussion we always identify f(x) with its 2�-periodic extension.

3.1. Partial sum

As we are interested not only in the convergence of a0
2
+

P
n=1
1 fan cos (nx)+ bn sin (nx)g but also

whether its limit is f(x), we naturally try to study limn!1 jf(x)¡Sn(x)j where

Sn(x)=
a0
2
+

X
k=1

n

fak cos (kx)+ bk sin (kx)g: (57)

Substituting (56) into (57) we have

Sn(x) =
1
2�

Z
¡�

�

f(x) dx

+
X
k=1

n
1
�

Z
¡�

�

ff(x) [cos (ku) cos (kx)+ sin (ku) sin (kx)]gdu

=
1
�

Z
¡�

�
(
f(u)

"
1
2
+

X
k=1

n

cos (k (x¡ u))

#)
du

=

Z
¡�

�

f(u)Dn(x¡ u) du: (58)

Here

Dn(t) :=
1
2�

+
1
�

X
k=1

n

cos (k t)=
sin [(n+1/2) t]
2� sin (t/2)

; n=0; 1; 2; 3; :::: (59)

are called the n-th Dirichlet kernel.
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The �eld of analysis, from late 19th to mid-20th century, has been dominated by the study of
linear operators, that is linear mappings from one space of functions to another space of functions.

Intuitively, an operator can be seen as a �blackbox� whose input and output are both functions

Input f!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
Operator

Output g, or more formally

A(f)= g: (60)

Exercise 20. Argue that di�erentiation is an operator.

The study of general operators turns out to be very di�cult. As a consequence the focus
before mid-20th century has been linear operators, that is operators L such that

L(a f + b g)= aL(f)+ b L(g) (61)

for function f ; g and numbers a; b.

Exercise 21. Prove that

L(f)(x) :=

Z
0

x

f(t) dt (62)

is a linear operator.

Exercise 22. Prove that Taylor expansion to degree 3 at x0=0

f(x) 7!T (f)(x) := f(0)+ f 0(0) x+
f 00(0)

2
x2+

f 000(0)

6
x3 (63)

is a linear operator.

Exercise 23. Let f(x) has Fourier expansion a0

2
+

P
k=1

1 fak cos (k x) + bk sin (k x)g on [¡�; �]. Prove that
for any n2N the mapping from f to the partial sum

f(x) 7!Sn(x) :=
a0
2
+

X
k=1

n

fak cos (k x)+ bk sin (k x)g (64)

is a linear operator. To emphasize this we can denote the partial sums by Sn(f)(x).

Many linear operators allow an �integral� representation: Say L is a linear operator de�ned
on f :A 7!R. Then under certain conditions, there is K(x; y):A�A 7!R such that

L(f)(x)=

Z
A
K(x; y) f(y) dy: (65)

This function K(x; y) is called the �kernel� of the operator L. Clearly the properties of the
abstract object L can be understood through the study of the more concrete � thus easier to
study � object K(x; y).

Exercise 24. Find the kernel for the operator de�ned in (62).

In some cases the kernelK(x; y) is of the special form k(x¡ y) where k:A 7!R. This property
would signi�cantly reduce the di�culty of understanding the operator as now we only need to
understand the function k(�).

What is a �kernel�?
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Exercise 25. Prove

1

2 �
+
1

�

X
k=1

n

cos (k t)=
sin [(n+1/2) t]

2 sin (t/2)
: (66)

(Hint:17 )

Exercise 26. Prove that Z
¡�

�

Dn(t) dt=1: (67)

(Hint:18 )

Exercise 27. Prove that

lim
n!1

h
lim
t!0

Dn(t)
i
=1: (68)

(Hint:19 )

Exercise 28. Let f be periodic with period 2�. Prove thatZ
¡�

�

f(u)Dn(x¡u) du=
Z
¡�

�

Dn(t) f(x¡ t) dt=
Z
¡�

�

Dn(t) f(x+ t) dt: (69)

(Hint:20 )

Exercise 29. Prove that

Sn(x)=

Z
0

�

Dn(t) [f(x+ t)+ f(x¡ t)] dt: (70)

(Hint:21 )

3.2. Convergence

The key observation is that, for any s2R,

Sn(x)¡ s=
Z
0

�

Dn(t) [f(x+ t)+ f(x¡ t)¡ 2 s] dt: (71)

Exercise 30. Prove (71). (Hint:22 )

Theorem 13. Let x02 (¡�; �). Let f(x) satisfy at x0

9�; �;M > 0; 8jx¡ x0j<�; jf(x)¡ f(x0)j<M jx¡ x0j�; (72)

then limn!1Sn(x0)¡! f(x0).

Remark 14. Note that mere continuity of f(x) at x0 is not enough to guarantee convergence. On
the other hand, from the above theorem we see that convergence is guaranteed if f(x) is only slightly
better than just being continuous (the hypothesis in the theorem is called �Hoelder continuity�).
This fact makes it di�cult to explicit construct a continuous function whose Fourier expansion does
not converge to itself. We will discuss a bit more in �4.2.

17. 2 sin (t/2) cos (k t)= sin (k t+ t/2)¡ sin (k t¡ t/2);

18. Use (59).

19. L'Hospital for the inner limit.

20. Change of variable t=x¡u, then notice that Dn(t) is even.

21. Split the RHS of (69) to
R
0
�
+
R
¡�
0 then change variable in the latter integral.

22. Dn(t) is even + Exercises 26, 29.
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Proof. Without loss of generality we take x0= 0. Since Dn(t) is an even function all we need to
prove is

lim
n!1

Z
¡�

�

f(x)Dn(x) dx= f(0): (73)

To do this we �rst notice that

f(0)=

�Z
¡�

�

Dn(x)

�
f(0)=

Z
¡�

�

f(0)Dn(x) dx (74)

which means we should study ����Z
¡�

�

[f(x)¡ f(0)]Dn(x) dx

����: (75)

Note that the di�culty here is that
R
¡�
� jDn(x)j!1 therefore we could not put the absolute value

inside the integral.
We claim:

For any � > 0,

lim
n!1

�����
Z
�

�

[f(x)¡ f(0)]Dn(x) dx+

Z
¡�

¡�
[f(x)¡ f(0)]Dn(x) dx

�����=0: (76)

This claim is a consequence of the Riemann-Lebesgue Lemma, which claims

Let f(x) be Riemann integrable on [a; b]. Then

lim
t!1

Z
a

b

f(x) cos (t x) dx= lim
t!1

Z
a

b

f(x) sin (t x) dx=0: (77)

(see Problem 3).
Now for any "> 0, we take � such that for all x2 (¡�; �),

jf(x)¡ f(0)j<M jxj�; jxj�
j2 sin (x/2)j < 2 jxj�¡1; 4M

��
��<

"
2
: (78)

Then we have �����
Z
¡�

�

[f(x)¡ f(0)]Dn(x) dx

����� 6
Z
¡�

�

jf(x)¡ f(0)j jDn(x)jdx

6 M

Z
¡�

�

jxj�
���� sin [(n+1/2)x]
2� sin (x/2)

���� dx
6 2M

�

Z
¡�

�

jxj�¡1 dx

=
4M
��

��<
"
2
: (79)

Now thanks to (76), there is N 2N such that

8n>N ;

�����
Z
�

�

[f(x)¡ f(0)]Dn(x) dx+

Z
¡�

¡�
[f(x)¡ f(0)]Dn(x) dx

�����< "
2
: (80)
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Putting things together, we see that for all n>N ,

jf(0)¡Sn(0)j=
����Z
¡�

�

[f(x)¡ f(0)]Dn(x) dx

����< "
2
+
"
2
= ": (81)

Thus ends the proof. �

Exercise 31. Explain why we could take x0=0 �without loss of generality�. (Hint:23 )

Exercise 32. Prove (76) using Riemann-Lebesgue Lemma.

Problem 1. Assume that at x0 the following is satis�ed:

� A := limx!x0+f(x); B := limx!x0¡f(x) exist;

� There is �; �;M >0 such that for all x2 (x0¡ �; x0), jf(x)¡Aj<M jx¡x0j�, and for all x2 (x0; x0+ �),
jf(x)¡B j<M jx¡x0j�. Then

lim
n!1

Sn(x0)=
A+B
2

=
1
2

h
lim

x!x0+
f(x)+ lim

x!x0¡
f(x)

i
: (82)

Exercise 33. How does the Fourier series converge at end points ��? (Hint:24 )

Example 15. Consider the Fourier series for f(x) with period 2 � and f(x)=x for ¡� <x<�. f
is continuous for ¡� <x<� but f(�¡ )=�=/ ¡�= f(¡�+). Clearly the hypotheses of Theorem
13 (or more precisely Problem 1) are satis�ed at every x. For example at any x02 (¡�; �) we have

jf(x)¡ f(x0)j6 jx¡x0j (83)

for all other x.

Therefore its Fourier series will converge to f~ with period 2� and

f~(x)=

�
x ¡� <x<�
0 x=�� (84)

Example 16. Consider the Fourier series for f(x) with period 4 and

f(x)=

�
1 ¡2<x< 0
x 0<x< 2

: (85)

We see that f is continuous for ¡2<x< 0 and 0<x< 2, while has jump discontinuity at ¡2; 0; 2.
As a consequence its Fourier series converges to f~ with period 4 and

f~(x)=

8>><>>:
1 ¡2<x< 0
1/2 x=0
x 0<x< 2
3/2 x=�2

: (86)

23. Change of variable x¡x0¡! t and then use periodicity.

24. Remember that f is periodic. So at �, we have f(�¡ ) = f(�); f(�+)= f(¡�). So the limit is 1

2
(f(�) + f(¡�)).
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3.3. Di�erentiation and integration

If the constants �;M ; � can be taken to be uniform in x on an interval [a; b], that is

8x2 [a; b]; 8jy¡ xj<�; jf(x)¡ f(y)j<M jx¡ y j�; (87)

then the convergence in Theorem 13 is uniform. Thus we can state di�erentiation and integration
theorems based on condition (87). However we will not state them as for most practical situation,
the following weaker result su�ces.

Definition 17. A function is called piecewise continuous on [a; b] if and only if there are �nitely
many points a=a0<a1< :::<am= b, such that f(x) is continuous on each open interval (ai; ai+1)
and furthermore the one-sided limits of f(x) exist and are �nite at every ai.

Theorem 18. (Uniform convergence of Fourier series) Let f(x) be a continuous, 2 �-
periodic functions on R. If f 0 is piecewise continuous, then the Fourier series for f converges
uniformly to f on R.

Exercise 34. Prove that if f 0 is piecewise continuous, then (87) is satis�ed at every x with �=1. (Hint:25 )

Exercise 35. Check that the functions in Examples 15 and 16 satis�es the hypotheses of Theorem 18.

Example 19. Consider the 2 �-periodic function de�ned by f(x) = x for x 2 (¡�; �]. We have
f 0(x) exists everywhere except at (2 k+ 1) �, k 2Z. Furthermore f 0(x) = 1 on (¡�; �). Therefore
f is continuous and f 0 piecewise continuous and we can apply Theorem 18 to obtain

f(x+)+ f(x¡ )
2

= 2
X
n=1

1
(¡1)n+1

n
sin (nx): (88)

for all x2R. In particular, at x= �

2
we obtain

�
4
=1¡ 1

3
+
1
5
¡ 1
7
+ ��� (89)

From Theorem 18 the following is immediate.

Theorem 20. (Differentiation and Integration)

� Let f(x) be continuous, 2 �-periodic. Let f 0(x) and f 00(x) be piecewise continuous. Then the

Fourier series of f 0(x) converges to f 0(x+)+ f 0(x¡ )
2

at every x.

� Let f(x) be piecewise continuous. Then we can integrate its Fourier series termwise, that isZ
a

b

f(x) dx=

Z
a

b a0
2
dx+

X
n=1

1 Z
a

b

[an cos (nx)+ bn sin (nx)] dx: (90)

25. If f 0 is piecewise continuous, then it is bounded. Apply MVT.
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Exercise 36. Let f � a0

2
+

P
n=1

1
an cos (nx)+ bn sin (nx). Prove that

f 0�
X
n=1

1

[an cos (nx)+ bn sin (nx)]0=
X
n=1

1

(n bn) cos (nx)+ (¡n an) sin (nx): (91)

Exercise 37. Prove Theorem 20. (Hint:26 )

Remark 21. A surprising fact is that Fourier series can always be integrated termwise, be the
convergence uniform or not. See Problem 8.

Example 22. Find the functions represented by the series obtained by the termwise integration of
the following series

4
�

X
n=0

1
sin (2n+1)x
(2n+1)

: (92)

which is Fourier series for

f(x)=

�
¡1 ¡� <x< 0
1 0<x<�

; (93)

from ¡� to x.

Solution. By Theorem 20 we know that the integrated series represents

Z
¡�

x

f(x) dx=

8>>><>>>:
Z
¡�

x

¡1 dx ¡� <x< 0Z
¡�

0

¡1 dx+
Z
0

x

dx 0<x<�

=

�
¡(x+�) ¡� <x< 0
¡�+x 0<x<�

= jxj ¡�: (94)

Example 23. Consider f(x) be periodic with period 2 � and satisfying f(x)=x2 on [¡�;�]. Then
f(x) is continuous and with piecewise continuous derivatives f 0; f 00. If we are given

x2� �2

3
+

X
n=1

1
4

n2
(¡1)n cos (nx); (95)

then we can conclude from Theorems 18 and 20 that

x2=
�2

3
+

X
n=1

1
4

n2
(¡1)n cos (nx); (96)

2x=(x2)0=
X
n=1

1
4
n
(¡1)n+1 sin (nx); x2 (¡�; �) (97)

which gives

x=
X
n=1

1
2
n
(¡1)n+1 sin (nx); x2 (¡�; �): (98)

26. First notice that the trigonometric series obtained from termwise di�erentiation is the Fourier series of f 0. Now if f 00 is
piecewise continuous then the convergence of this series is uniform. For the integraion part, consider the Fourier expansion of the
function F (x)¡ a0

2
x where F (x)=

R
0

x
f(t) dt. Note that ¡a0

2
x is necessary as the term a0

2
x cannot be part of a Fourier series.
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4. Finer Properties and Generalizations

4.1. The Gibbs phenomenon

In a short letter to Nature in 1898, Yale mathematical physicist J. W. Gibbs (1839 - 1903) men-
tioned that, as the number of terms in the partial sum of a Fourier series for a discontinuous
periodic function is increased, the amplitude of the wiggles will decrease everywhere except near
the discontinuity. Furthermore, at the discontinuity, the maximum overshoot and undershoot will
not decrease to zero. In fact the ratio between this maximum and the size of the jump approaches:

1
�

Z
0

� sinx
x

dx¡ 1� 0.089: (99)

Remark 24. Gibbs mentioned (99) without any justi�cation. It turns out that, as early as 1848, a
22-year old student at Trinity College, Cambridge, named Henry Wilbraham (1825 - 1883) already
discovered this phenomenon through hand-plotting partial sums and proved (99). Unfortunately he
left academia in his early 30s and the paper was forgotten.

Example 25. We calculate the Fourier series on [¡�; �] for

f(x)=

�
¡1 ¡�6x< 0
1 06x<� : (100)

Since f(x) is odd, an=0. We have

bn =
1
�

Z
¡�

�

f(x) sinnx dx

=
1
n�

[cosnxj¡�0 ¡cosnxj0� ]

=
2 (1¡ cosn�)

n�

=

8<: 4
n�

n odd

0 n even
: (101)

Therefore

f(x)� 4
�

�
sinx+

sin 3x
3

+
sin 5x
5

+ ���
�
: (102)

Exercise 38. Write a short program to illustrate this phenomenon.27

To prove Gibbs phenomenon for f(x), we need to �nd the maximum of the partial sum. This
can be done easily through calculating S2n+10 (x) and set it to 0.

Exercise 39. Prove that

S2n+1
0 (x)=

1

�

sin (2 (n+1)x)

sin x
: (103)

27. If youdon't have time to do this, please visit http://www.sosmath.com/fourier/fourier3/gibbs.html to see an animation.
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(Hint:28 )

Thus we consider f(x�) for x�=�/[2 (n+1)]. We have

lim
n!1

S2n+1(x
�)=

1
�

Z
0

� sinx
x

dx (104)

and the conclusion immediately follows.

Exercise 40. Prove (104). (Hint:29 )

Remark 26. The �o�cial� proof of Gibbs phenomenon for general discontinuous functions, together
with the coinage of �Gibbs phenomenon�, was by Maxime Bocher (1861 - 1918). Today one of the
most important prizes in Analysis is named after him.

4.2. More on pointwise convergence

Recall that Sn(x)¡ s=
R
0

�
Dn(t) [f(x+ t)+ f(x¡ t)¡ 2 s] dt. We �x x and denote

�(t) := f(x+ t)+ f(x¡ t)¡ 2 s: (105)

Thus

Sn(x)¡ s=
Z
0

�

Dn(t) �(t) dt: (106)

Theorem 27. (Dini) If there is � > 0 such thatZ
0

� j'(t)j
t

dt <1 (107)

then

lim
n!1

Sn(x)= s: (108)

Show that Theorem 13 follows from the above result.

Proof. Exercise. �

The main stream study of convergence of Fourier series in the 19th century focused on functions
with

�nitely many maxima and minima and �nitely many discontinuities.

The rationale behind such assumption is very hard to understand until one learns the following
de�nition.

Definition 28. (Bounded variation) A function f(x) is said to have bounded variation on [a; b]
if and only if there is M > 0 such that for every partition P = fa=x0<x1< ���<xn= bg,X

i=0

n¡1

jf(xi+1)¡ f(xi)j<M: (109)

28. Termwise di�erentiation (note that this is a �nite sum), and notice 2 sinx cosk x= sin (k x+x)¡ sin (k x¡x).
29. sin x

x
is continuous on [0; �] and therefore is uniformly continuous on [0; �].
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We denote the total variation of f on [a; b] as:

BV(f ; [a; b]) := sup
P

(X
i=0

n¡1

jf(xi+1)¡ f(xi)j

)
: (110)

Exercise 41. Prove that any bounded function with ��nitely many maxima and minima and �nitely many
discontinuities� has bounded variation.

Problem 2. Let f have bounded variation on [a; b].

a) Prove that f = g¡h where g(x); h(x) are increasing. (Hint:30 )

b) Prove that at every x2 (a; b), f(x+) and f(x¡ ) exist.

c) Prove that f is Riemann integrable.

d) Prove that if f 0 exists and jf 0j is Riemann integrable, then

BV(f ; [a; b])=
Z
a

b

jf 0(x)j dx: (111)

Theorem 29. (Jordan) If there is � > 0 such that �(t) has bounded variation on [0; �], then

lim
n!1

Sn(x)= s: (112)

Proof. First it su�ces to prove the claim for �(t) increasing, satisfying �(0)=0. Second it su�ces
to prove

lim
n!1

Z
0

� sin (n+1/2) t
t

�(t) dt=0: (113)

For any "> 0, take � > 0 such that �(�)<"/(2A) where

A := sup
a<b

�����
Z
a

b sinx
x

dx

�����: (114)

Then we have

lim
n!1

Z
�

� sin (n+1/2) t
t

�(t) dt=0 (115)

by Riemann-Lebesgue Lemma.
Finally we haveZ

0

� sin (n+1/2) t
t

�(t) dt= �(�)

Z
�

� sin (n+1/2) t
t

dt= �(�)

Z
�
n+

1

2

�
�

�
n+

1

2

�
� sinx

x
dx (116)

which is bounded by A � ("/(2 A)) = "/2. Here the �rst equality is the second intermediate value
theorem for integrals. �

Exercise 42. Prove that there is A> 0 such that for any a< b,�����
Z
a

b sin x
x

dx

�����<A: (117)

30. Take g(x)=BV(f ; [a; x]).
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(Hint: Integration by parts)

Exercise 43. Let f(x); g(x) be continuous on [a; b]. Furthermore assume g(a)=0 and g(x) is increasing. Then
there is c2 [a; b] such that Z

a

b

f(x) g(x) dx= g(b)

Z
c

b

f(x) dx: (118)

(Hint:31 )

Exercise 44. Fill in all the details of the above proof.

Corollary 30. Let f(x) be 2 �-periodic and have bounded variation on [a; b]�R. Then its Fourier

series converges uniformly on [a; b] to f(x+)+ f(x¡ )
2

.

Theorem 31. (de la Vallée-Poussin) Let  (t)= t¡1
R
0

t
�(u) du and s be such that  (0+)=0.

Assume  (t) has bounded variation. Then

lim
n!1

Sn(x)= s: (119)

Proof. Notice that �(t) =  (t) + t  0(t). The conclusion follows from application of Jordan's test
to the �rst term and Dini's test to the second. �

Exercise 45. Consider f(x)= (log (1/x))¡1. Show that Jordan's condition is satis�ed but Dini's is not.

Exercise 46. Consider f(x)=x1/2 sin (1/x). Show that Dini's condition is satis�ed by Jordan's is not.

Remark 32. It turns out that, in the context of approximating continuous functions using trigono-
metric series, Fourier series is not the best choice.

The best choice is given by Fejer:

FN(x) :=
S0(x)+ ���+SN¡1(x)

N
: (120)

It can be proved that, as long as both f(x+); f(x¡ ) exist, then

lim
N!1

FN(x)= f(x): (121)

See Chapter 13 of (Titchmarsh) for proofs and discussions.
A direct corollary of this is the following Weierstrass' Second Approximation Theorem:

Let f(x) be continuous on [¡�; �]. For any " > 0, there is a trigonometric poly-
nomial T (x) such that jf(x)¡T (x)j<" for all x2 [¡�; �].

4.3. L2 convergence

�In all expositions of Fourier's series which have come to my notice, it is expressly
stated that the series can represent a discontinuous function. The idea that a real
discontinuity can replace a sum of continuous curves is so utterly at variance with the
physicists' notions of quantity, that it seems to me to be worth while giving a very
elementary statement of the problem in such simple form that the mathematicians
can at once point to the inconsistency if any there be.�

31. Set F (x) :=
R
a
x
f(t) dt, integrate by parts and apply intermediate value theorem.
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��� Albert Michelson (1852 - 1931)32

Definition 33. (L2 functions) Let A � RN. We say f(x) 2 L2(A) if and only if f2(x) is
integrable33 on A. We further denote

kf(x)kL2(A)2 :=

Z
A
f(x)2dx: (122)

Exercise 47. Let p > 1 be real, f(x) > 0. Then f(x) is Riemann integrable on [0; 1] if and only if f(x)p is
Riemann integrable on [0; 1]. (Hint:34)

Theorem 34. Let f(x)2L2([¡L;L]). Let �0; :::; �N ; �1; :::; �N 2R and de�ne

TN(x) :=
�0
2
+

X
1

N n
�n cos

n�x
L

+ �n sin
n�x
L

o
: (123)

Then

kf(x)¡TN(x)kL2([¡L;L])2 = kf(x)¡SN(x)kL2([¡L;L])2 + kSN(x)¡TN(x)kL2([¡L;L])2 : (124)

Here SN(x) =
a0
2
+

P
1
N �

an cos
n�x

L
+ bn sin

n�x

L

	
is the partial sum of the Fourier expansion of f

on [¡T ; T ]. Furthermore we have

kf(x)¡SN(x)kL2([¡L;L])2 = kf(x)kL2([¡L;L])2 ¡

"
a0
2

2
+

X
n=1

N

(an
2 + bn

2)

#
L: (125)

kSN(x)¡TN(x)kL2([¡L;L])=

"
(a0¡�0)2

2
+

X
n=1

1

[(an¡�n)2+(bn¡ �n)2]

#
L: (126)

Proof. Direct calculation using the orthogonality relations (33 � 35). Left as exercise. �

Corollary 35. Let f(x)2L2([¡L;L]). Then the solution to

min
�0;:::;�N ;�1;:::;�N

kf(x)¡TN(x)kL2([¡T ;T ]) (127)

is TN(x)=SN(x).

Corollary 36. (Bessel's inequality) Let f(x) 2 L2([¡L; L]), let a0
2
+

P
n=1
1 �

an cos
n�x

L
+

bn sin
n�x

L

	
be its Fourier expansion. Then

L

"
a0
2

2
+

X
n=1

1

(an
2 + bn)

2

#
6

Z
¡L

L

f(x)2dx: (128)

Exercise 48. Prove limn!1an=0 using Bessel's inequality.

32. Of �Michelson-Morley experiment� fame. In a 1898 letter to the journal Nature. This letter led to several more letters
onNature in the same year by Cambridgemathematician A. E. H. Love, the French mathematician Henri Poincaré, and Gibbs.
One of Gibbs' letter is the starting of the study of the Gibbs' pehnomenon. Interestingly, Poincaré was on Michelson's side.
For more on the story of Gibbs' phenomenon, see (Nahin:Euler) .

33. For the theory to be truly useful the �integrability� here has to be Lebesgue's integrability. However for now we can
safely ignore this subtle point.

34. Cauchy-Schwarz.
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Remark 37. (Parseval's equality) It turns out that equality holds in (128). One way to prove
this without invoking functional analysis is as follows.

Exercise 49. Prove that, for any "> 0, there is N 2N such thatZ
¡L

L

(f(x)¡SN(x))2 dx<": (129)

Then conclude that equality holds in (128). (Hint: Apply Weierstrass' approximation theorem together with the
fact that the Fourier partial sum is optimal in the L2 sense).

Exercise 50. Assume

lim
n¡!1

kfn(x)¡ f(x)kL2([¡L;L])=0: (130)

Does it follow that limn!1fn(x)= f(x)?

Remark 38. As we have seen, to prove pointwise convergence, f(x) needs to more regular than
being only continuous. The weakening of this assumption turned out to be very di�cult. In 1966
Lennart Carleson �nally proved that for any f(x) 2 L2([¡L; L]), we have limN!1SN(x) = f(x)
almost everywhere. The subtlety of this problem can be clearly seen from a related result by A.
N. Kolmogorov in 1926: There is f(x) 2 L1, that is jf(x)j is integrable, whose Fourier expansion
diverges everywhere.

Exercise 51. Prove that if f(x)2L1([¡�; �]), then its Fourier expansion is well-de�ned.

4.4. Sturm-Liouville theory

4.4.1. Separation of variables for partial di�erential equations

We use

@u
@t

= �
@2u

@x2
+P (x; t); a <x< b; u(x; 0)= f(x); +boundary conditions (131)

to illustrate the method.

1. Require X(x)T (t) to solve the homogeneous equation

@u
@t

= �
@2u

@x2
(132)

which leads to eigenvalue problem for X:

X 00¡KX =0+boundary conditions. (133)

The only solution to this problem is X = 0 unless K equals one of countably many values
K1; K2; :::. When K =Kn, there is a solution Xn such that all the solutions can be written
as X =CXn for some C 2R.

2. Expand

f(x)=
X
n

fnXn: (134)

Expand

P (x; t)=
X
n

pn(t)Xn: (135)
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3. Solve

Tn
0 ¡ �KTn= pn(t); Tn(0)= fn (136)

to obtain Tn.

4. Write down the solution

u(x; t)=
X
n

Tn(t)Xn(x): (137)

Question. For arbitrary f(x) and P (x; t), is it always possible to write f(x) =P
n fnXn and P (x; t) =

P
n pn(t)Xn with Xn's the eigenfunctions obtained in Step

1? If so, how?

4.4.2. Sturm-Liouville theory

Jacques Charles François Sturm (1803 � 1855) and Joseph Liouville (1809 � 1882) studied the
following problem: Given an general eigenvalue problem

¡(p(x)X 0)0+ q(x)X =�w(x)X; a<x<b (138)

with boundary conditions

�1X(a)+ �1X
0(a)= 0; �2X(b)+ �2X(b)= 0: (139)

What can we say about the eigenvalues/eigenfunctions?
The following is an informal version of their results.

Theorem 39. (Sturm-Liouville, Woolly version) The following hold true:

1. The eigenvalues are countable, and can be ordered by their sizes.

2. For each eigenvalue �n, the eigenfunction can be written as C Xn, where C is an arbitrary
constant.

3. The Xn's are �orthogonal� in the following sense:Z
a

b

Xm(x)Xn(x)w(x) dx=0 whenever m=/ n: (140)

4. The Xn's are �complete� in the following sense: Any reasonable f(x) (for example, bounded)
has exactly one representation as linear combination of Xn's:

f(x)=
X
n

fnXn: (141)

The �=� here means

lim
N!1

Z �����f(x)¡ X
n<N

fnXn

����� dx=0: (142)

Remark 40.

� As far as I know the proof has to involve the theory of compact linear operators;

� Many �special functions�, such as Bessel functions, Legendre functions, are such eigenfunc-
tions.

� We see that the properties of these �eigenfunction expansions� are very similar to the Fourier
expansion. However the study of their pointwise convergence is much more complicated.

� Study of such eigenfunctions is a dominating topic for analysts in the early 1900s.

March 18, 2014 25



Example 41. Consider the eigenvalue problem

X 00¡KX =0; X(0)=X(L)= 0; (143)

We know that the eigenfunctions are

Xn= sin
�
n�x
L

�
; n=1; 2; 3; ::: (144)

Then from the above theorem we know that any f(x) can be written as

f(x)=
X
n=1

1

fn sin
�
n�x
L

�
: (145)

We will see later that this expansion has a name: Fourier Sine Series.

Example 42. Consider the eigenvalue problem

X 00¡KX =0; X 0(0)=X 0(L)= 0: (146)

We know that the eigenfunctions are

Xn= cos
�
n�x
L

�
; n=0; 1; 2; 3; ::: (147)

So the above theorem tells us any f(x) can be written as

f(x)=
X
n=0

1

fn cos
�
n�x
L

�
: (148)

Such expansion is called: Fourier Cosine Series.

4.4.3. Eigenfunction expansions

To put the theorem into practice, we need to know how to compute the coe�cients.

� Problem: Determine fn's in

f(x)=
X
n

fnXn: (149)

� Idea: Use �orthogonality�:Z
a

b

Xm(x)Xn(x)w(x) dx=0 when m=/ n: (150)

� Let's set a particular n0 and try to �nd out fn0. As we try to use the above orthogonality,
naturally we multiply both sides of

f(x)=
X
n

fnXn: (151)

by Xn0(x)w(x), and then integrate from a to b. We haveZ
a

b

f(x)Xn0(x)w(x) dx =

Z
a

b �X
n

fnXn

�
Xn0 (x)w(x) dx

=
X
n

fn

Z
a

b

Xn(x)Xn0 (x)w(x) dx: (152)
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As Z
a

b

Xn(x)Xn0 (x)w(x) dx=0 for all n=/ n0 (153)

we see that the right hand side in fact has exactly one nonzero term:Z
a

b

Xn0(x)
2w(x)dx: (154)

Thus we reach Z
a

b

f(x)Xn0(x)w(x) dx= fn0

Z
a

b

Xn0(x)
2w(x)dx: (155)

and consequently

fn0=

R
a

b
f(x)Xn0(x)w(x) dxR
a
b Xn0(x)

2w(x)dx
: (156)

Example 43.

� Fourier Cosine Series.
In this case

Xn= cos
�
n�x
L

�
: n=0; 1; 2; 3; ::: (157)

We have Z
0

L h
cos

�
n�x
L

�i
2
dx =

Z
0

L cos
�
2n�x

L

�
+1

2
dx=

L
2
: (158)

Note that the above calculation is wrong when n=0. We have to calculate the n=0
case separately: Z

0

L

12 dx=L: (159)

So the fn's in the Fourier Cosine expansion

f(x)=
X
n=0

1

fn cos
�
n�x
L

�
(160)

are given by

f0=
1
L

Z
0

L

f(x) dx; fn=
2
L

Z
0

L

f(x) cos
�
n�x
L

�
dx; for n=1; 2; 3; ::: (161)

A more popular way of writing it is setting a0=2 f0, and an= fn to get a universal formula

an=
2
L

Z
0

L

f(x) cos
�
n�x
L

�
dx; n=0; 1; 2; 3; ::: (162)

The Fourier cosine series then reads

a0
2
+

X
n=1

1

an cos
�
n�x
L

�
: (163)

� Fourier Sine Series.
In this case

Xn= sin
�
n�x
L

�
; n=1; 2; 3; ::: (164)
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Similar calculation as in the previous case gives

f(x)=
X
n=1

1

fn sin
�
n�x
L

�
=) fn=

2
L

Z
0

L

f(x) sin
�
n�x
L

�
dx; n=1; 2; 3; ::: (165)

� Often, to emphasize the relation between Fourier Cosine/Sine series and Fourier series, the
following notation is used:

� Fourier Cosine:

f(x) =
a0
2
+

X
n=1

1

an cos
�
n�x
L

�
; an =

2
L

Z
0

L

f(x) cos
�
n�x
L

�
dx; n = 0; 1; 2;

3; ::: (166)

� Fourier Sine:

f(x)=
X
n=1

1
bnsin

�
n�x
L

�
; bn=

2
L

Z
0

L

f(x) sin
�
n�x
L

�
dx; n=1; 2; 3; ::: (167)

Example 44. Compute the Fourier cosine series for

f(x)= ex; 0<x< 1: (168)

Solution. We have L=1. First

a0=
2
1

Z
0

1

exdx=2 (e¡ 1): (169)

next

an = 2

Z
0

1

ex cos (n�x) dx

= 2

Z
0

1

cos (n�x) dex

= 2

�
cos (n�x) exj01+n�

Z
0

1

ex sin (n�x) dx
�

= 2 [e (¡1)n¡ 1]+ 2n�

Z
0

1

sin (n�x) dex

= 2 [e (¡1)n¡ 1]+ 2n�

�
ex sin (n�x)j01¡n�

Z
0

1

ex cos (n�x) dx
�

= 2 [e (¡1)n¡ 1]¡ 2 (n�)2
Z
0

1

ex cos (n�x) dx

= 2 [e (¡1)n¡ 1]¡ (n�)2 an: (170)

Therefore

an=
2 [e (¡1)n¡ 1]
1+ (n�)2

: (171)

So the Fourier cosine series is given by

ex= e¡ 1+
X
n=1

1
2 [e (¡1)n¡ 1]
1+ (n�)2

cos (n�x): (172)
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5. More Exercises and Problems

5.1. Basic exercises

We will not further group the exercises since most of them involve both calculation of expansion
and justi�cation of convergence.

Exercise 52. Let f(x)= jxj. Prove that its Fourier series on [¡�; �] is given by

jxj= �

2
¡ 4

�

�
cos x
12

+
cos (3 x)

32
+ ���

�
: (173)

Then prove
1
1
+
1
32
+
1
52
+ ���= �2

8
: (174)

Justify every step of your argument.

Exercise 53. In 1744 Euler wrote in a letter

�¡ t
2

=
X
n=1

1
sin (n t)

n
: (175)

Derive this expansion and explain in what sense it holds. Then deriveX
n=1

1
cos (nx)

n2
=
�2

6
¡ �

2
x+

x2

4
: (176)

Setting x=�/2 to obtain

1¡ 1
22
+
1
32
¡ 1
42
+ ���= �2

12
: (177)

Integrate again to obtain

1¡ 1
33
+
1
53
¡ 1
73
+ ���= �3

32
: (178)

Remark. Note that 1+ 1

23
+

1

33
+ ��� is still unknown.

(Hint:35 )

Exercise 54. Consider the function

f(x)=

�
1 jxj<�/2
¡1 �/2< jxj<�

: (179)

Prove that its Fourier expansion on (¡�; �) is

f(x)� 4
�

�
cos x¡ cos (3 x)

3
+

cos (5x)
5

¡ ���
�
: (180)

Now use the fact that jf(x)j2=1 to conclude

1

12
+
1

32
+
1

52
+ ���= �2

8
(181)

through term-wise integration. Finally from this result prove that

1
12
+
1
22
+ ���= �2

6
: (182)

Justify every step of your argument.

Exercise 55. Let �2R be non-integer. Show that the Fourier expansion of cos (�x) on [¡�; �] is

cos (�x)=
sin (��)
��

+
� sin (��)

�

X
n=1

1
(¡1)n
�2¡n2 2 cos (nx): (183)

Use this to prove that

�=2+4
X
n=1

1
(¡1)n
1¡ 4n2 : (184)

35. Termwise integration.
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Justify every step of your argument.

Exercise 56. Prove
1

12
+
1

22
+ ���= �2

6
: (185)

through Fourier expansion of
¡ � ¡x

4

�
2 on [0; 2�].

Exercise 57. (Folland) Let b2R. Find the sumsX
n=1

1
(¡1)n
n2+ b2

and
X
n=1

1
1

n2+ b2
(186)

by considering the Fourier expansion of f(x)= ejbjx on (¡�; �).

Exercise 58. Let f be continuous and periodic with period 2 �. Let a0

2
+

P
n=1

1
an cos n x + bn sin n x be its

Fourier expansion on [¡�; �]. Further assume that
P

n=1

1 janj and
P

n=

1 jbnj are convergent series. Prove that
the Fourier series converges to f uniformly. (Hint:36 )

5.2. More exercises
Exercise 59. Is cos (x)+ cos

¡
3

p
x
�
periodic? (Hint:37 )

Exercise 60. Let f(x) be periodic with fundamental period L> 0. Let T be a period of f . Prove that there is
n2N such that T =nL. (Hint:38 )

Exercise 61. Find f1; f2 with fundamental periods L1;L2>0, such that the fundamental period L of the function
f + g satis�es L<min fL1; L2g. (Hint:39 )

Exercise 62. Is the Dirichlet function D(x) =

�
1 x2Q
0 x2/Q periodic? If so, what is its fundamental period?

(Hint:40 )

Remark. The Dirichlet function D(x) is Dirichlet's response to the debate of �what is a function�: a rule, a
graph, or an arbitrary assignment. This debate was ignited by the study of trigonometric series, and was �nally
settled when most people agreed with the last statement.

Exercise 63. Find f1; f2, both with positive fundamental periods, such that f1(x)+ f2(x)=D(x) the Dirichlet
function. (Hint:41 )

Exercise 64. Let Dn(t) be Dirichlet kernel. Prove

lim
n!1

Z
¡�

�

jDn(t)jdt=1: (188)

(Math 317, 2014, HW4, Q5).

Exercise 65. Prove X
n=¡1

1
1

1+n2
=�

1+ e¡2�

1¡ e¡2� : (189)

through expansion of f(x)= e¡x over (0; 2 �) and Parseval's relation.

36. by Weierstrass's M-test the Fourier series converges uniformly. Let F (x) be the sum. Then F (x) is continuous and
F (x)¡ f(x) has Fourier expansion 0+

P
0 cosn x+0 sinn x. But F ¡ f is continuous, therefore F ¡ f =0. (Here we applied

the result from a problem in Homework 4)

37. No. Assume otherwise, there is T > 0 such that

cos (x+T )+ cos
¡

3
p

(x+T )
�
= cos (x) + cos

¡
3

p
x
�

(187)

for all x. Take d2

dx2
of both sides and derive cos (x+T )= cos (x); cos

¡
3

p
(x+T )

�
= cos

¡
3

p
x
�
.

38. Assume otherwise. Then there is n such that T 2 (n L; (n+ 1)L). Prove that T ¡ n L is also a period which leads to
contradiction.

39. f1=1 only for x=n odd, f2=1 only for x=n even.

40. Any r 2Q+ is a period. There is no fundamental period.

41. Take f1=1 only for x2N. f2=D(x)¡ f1. Then clearly f1 has fundamental period 1. On the other hand, clearly 1 is
also a period of f2. Prove that for any T < 1 f2(x)= f2(x+T ) cannot hold through discussing T 2Q and T 2/Q separately.
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Exercise 66. Be convinced by the Poisson summation formula:X
k=¡1

1

�(t¡ k)= 1+2
X
k=1

1

cos (2 � k t) (190)

through plotting partial sums of the right hand side.

5.3. Problems
Problem 3. (Riemann-Lebesgue Lemma) Let f(x) be Riemann integrable on [a; b]. Then

lim
t!1

Z
a

b

f(x) cos (t x) dx= lim
t!1

Z
a

b

f(x) sin (t x) dx=0: (191)

(Hint: 42)

Problem 4. (Riemann-Lebesgue Lemma for Improper integrals) Let jf(x)j be improperly Riemann
integrable on [a; b]. Then

lim
t!1

Z
a

b

f(x) cos (t x) dx= lim
t!1

Z
a

b

f(x) sin (t x) dx=0: (192)

Discuss:

a) Is it enough to assume the improper integrability of f(x)?

b) Can we take the interval to be in�nite?

Problem 5. (SS) Let Dn be the Dirichlet kernel. Prove that

1

2 �

Z
¡�

�

jDn(x)jdx=
4

�2
ln n+O(1): (193)

Then show that for any n2N, there is a continuous function fn such that 8x2R, jfn(x)j6 1, but
Sn(f)(0)> c ln n (194)

for some constant c independent of n.

Problem 6. (Wirtinger's inequality) Let f(x)2C1([0; 2 �]) satisfyZ
0

2�

f(x) dx=0: (195)

Prove Z
0

2�

[f 0(x)]2dx>
Z
0

2�

[f(x)]2 dx: (196)

Problem 7. Prove the general Gibbs phenomenon.

Problem 8. Prove that Fourier series can always be integrated termwise.

42. Consider �rst piecewise constant functions.
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