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1. Introduction

Definition 1. A power series is a particular type of infinite series of functions:

a0 + a1 (x− x0) + a2 (x−x0)2 + ···+ an (x−x0)n + ··· (1)

which is often denoted in the compact form

∑

n=0

∞
an (x−x0)

n. (2)

Remark 2. Intuitively, a power series is simply a polynomial whose degree is infinite.

Remark 3. It is crucial to understand that the index n in the power series
∑

n=0
∞

an (x − x0)
n is

only a “place holder”. Therefore we can replace n by any other symbol:

∑

n=0

∞
an (x− x0)

n,
∑

m=0

∞
am (x−x0)

m,
∑

k=0

∞
ak (x− x0)

k, or even
∑

l=2

∞
al−2 (x−x0)

l−2 (3)

all denote the same power series

a0 + a1 (x− x0) + a2 (x−x0)
2 + ···+ an (x−x0)

n + ··· (4)

However, they are not the same as

∑

n=2

∞
an (x− x0)

n or
∑

k=0

∞
ak (x−x0)

k+1 (5)

as the former starts from a different term, and the latter has a different relation between the
subscript and the power.

The motivation of the study of power series are two-fold.

1.1. Motivation 1: Taylor expansion

The study of power series can be viewed as the inverse problem for the study of Taylor expansion:

f(x) = f(x0) + f ′(x0) (x−x0) +
f ′′(x0)

2
(x− x0)

2 + ···+ f (n)(x0)
n!

(x−x0)
n + ··· (6)

In essence, Taylor expansion is the following relation

f(x) = a power series=a polynomial of degree infinity. (7)

We naturally ask: If

a0 + a1 (x− x0) + a2 (x−x0)
2 + ···+ an (x−x0)

n + ··· (8)
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is the Taylor expansion of f(x) at x0, does it hold that

f(x) = a0 + a1 (x−x0) + a2 (x−x0)
2 + ···+ an (x−x0)

n + ···? (9)

f ′(x) = a0 + a1 (x−x0) + a2 (x− x0)
2 + ···+ an (x− x0)

n + ···? (10)

∫

a

b

f(x) dx =

∫

a

b

a0 dx +

∫

a

b

a1 (x−x0) dx+ ···? (11)

Example 4. The Taylor expansion of ln (1 + x) is

x− x2

2
+

x3

3
+ ··· (12)

But can we conclude

ln (1 + 1)= 1− 1
2

+
1
3
− ··· (13)

1.2. Motivation 2: Power series method for ordinary differential equations

More practically, the solution to ordinary differential equations can be naturally obtained as a power
series.

Example 5. Solve Airy’s equation

y ′′= x y. (14)

The method proceeds as follows.

1. Write power series expansion for y:

y = a0 + a1 x+ ···+ an xn + ···=
∑

n=0

∞
an xn. (15)

Note that here we are taking x0 =0 which is usually the first choice.

2. Substitute into the equation:

(

∑

n=0

∞
an xn

)′′
=x

(

∑

n=0

∞
an xn

)

. (16)

3. Simplify both sides (Red = means “the operation needs justification”)

(

∑

n=0

∞
an xn

)′′
=
∑

n=0

∞
(an xn)′′=

∑

n=2

∞
an n (n− 1) xn−2 (17)

x

(

∑

n=0

∞
an xn

)

=
∑

n=0

∞
an xn+1. (18)

Note that the n=0 term a0 and the n=1 terms a1 x disappear when taking two derivatives.

4 Math 317 Week 03: Power Series



So the equation becomes

∑

n=2

∞
an n (n− 1) xn−2 =

∑

n=0

∞
an xn+1. (19)

Remark. Keep in mind that
∑ ··· is just a notation, a short hand. So

∑

n=2
∞

an n (n −
1) xn−2 is just a notation for the “real” power series

2 a2 + 6a3 x + ··· (20)

and
∑

n=0
∞

an xn+1 is just a notation for a0 x+a1 x2+ ···. In particular, we are free to change

either or both n to other symbols:

∑

m=2

∞
am m (m− 1)xm−2 =

∑

n=0

∞
an xn+1, (21)

∑

m=2

∞
am m (m− 1) xm−2 =

∑

l=0

∞
al x

l+1, (22)

whatever... They all mean the same equation.

4. Shift indices. Note that if we do not use the short hands and just write what the equation
really means:

2 a2 +6 a3 x + ···= a0 x+ a1 x2 + ··· (23)

we can immediately conclude

2 a2 =0, 6 a3 = a1, (24)

and so on. This is not satisfactory though1 as we won’t be able to get a “universal” relation
between an’s. To get such relation we have to analyze

∑

n=2

∞
an n (n− 1) xn−2 =

∑

n=0

∞
an xn+1. (25)

We try to do the same thing – Equate the terms on both sides with the same power of x.
To do this efficiently we need to “shift indices”, that is introducing one or more new indices
so that the generic terms (currently an n (n−1) xn−2 and an xn+1) has the same power of x.

• Shift left hand side. We try to re-write

∑

n=2

∞
an n (n− 1) xn−2 =

∑

···xk. (26)

It is clear that we should let the new index, k, be related to the old one, n, through

k =n− 2. (27)

1. For a certain type of problems this is satisfactory. We will see.
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Now replace every n by k +2:

∑

n=2

∞
an n (n− 1) xn−2 =

∑

k+2=2

∞
ak+2 (k + 2) (k +1) xk (28)

and simplify to
∑

k=0

∞
ak+2 (k +2) (k + 1)xk; (29)

• Similarly for the right hand side,

∑

n=0

∞
an xn+1 =

∑

k=1

∞
ak−1 xk. (30)

5. Balance the equation. The equation now becomes

∑

k=0

∞
ak+2 (k +2) (k + 1)xk =

∑

k=1

∞
ak−1 xk. (31)

Equating terms with same xk on both sides, we reach

(k =0): 2 a2 = 0; (32)

(k > 1): ak+2 (k +2) (k + 1) = ak−1; (33)

This is called the “recurrence relation”.

Remark. Note that when shifting indices, we use “k” as the new index for both sides. This
is just for convenience since at the end of the day we would like to pick terms with the same

xk from both sides. We can also use difference symbols and reach:

∑

k=0

∞
ak+2 (k +2) (k + 1)xk =

∑

l=1

∞
al−1 xl. (34)

This is the same equation as

∑

k=0

∞
ak+2 (k +2) (k + 1)xk =

∑

k=1

∞
ak−1 xk. (35)

The only difference is that we cannot proceed before renaming l by k!

Remark. Also, usually the index-shifting is done somewhat implicitly, that is we do not
explicitly introduce any new symbols. In the future we will just replace every n by n+2 and
obtain

∑

n=2

∞
an n (n− 1) xn−2 =

∑

n=0

∞
an+2 (n+ 2) (n+1) xn. (36)

6. Write down the solution.

From the recurrence relation we can get:

ak+2 =
ak−1

(k +2) (k +1)
=

ak−4

(k +2) (k + 1) (k − 1) (k − 2)
= ··· (37)
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which finally can be written as

ak =























a0

Πi=1
l (3 i) (3 i− 1)

k =3 l

a1

Πi=1
l (3 i+ 1) (3 i)

k =3 l + 1

0 k =3 l + 2

. (38)

So the final answer is

y(x) =
∑

k=0

∞
ak xk (39)

with ak given by the above.

Exercise 1. Find out all x ∈R such that y(x) is well-defined by (39). Is y(x) continuous? Is it differentiable?

Obtain an infinite series representation for y ′(x).

Remark 6. Airy’s equation looks very simple but its general solution cannot be written in “closed
form”. On the other hand, these solutions are very useful in practice that they were given a name
and became one class of the so-called “Special functions”.

Exercise 2. Solve the equation y ′ = 3 y. Try to obtain the solution in closed form.

Exercise 3. Find y(x) satisfying the equation y ′′ = 4 y as well as y(0)= 0, y ′(0)= 1. Try to obtain the solution

in closed form.

1.3. Theoretical issues to be settled

In the above solution we have done many dubious operations and thus left many theoretical gaps
open. For example

(

∑

n=0

∞
an xn

)′′
=
∑

n=0

∞
(an xn)′′. (40)

Why can we do this? Does this hold for all x? If not, how do we tell for which x the above holds?

Turns out, all these gaps are filled as long as we restrict ourselves to |x|< ρ, where 0 6 ρ 6∞2

is a certain number, determined by the coefficients a0, a1, ..., called “radius of convergence”.

In short, given a power series
∑

n=0

∞
an (x− x0)

n, (41)

let ρ be its radius of convergence. Then in |x−x0|< ρ we can treat it as if it’s a polynomial: Termwise
differentiation, termwise integration, re-arrangement of terms, etc. All OK.

On the other hand, for those x such that |x− x0|> ρ, the infinite sum

∑

n=0

∞
an (x−x0)

n (42)

diverges. In other words, for those x this sum does not represent a function at all.

2. Notice it’s 6, not <!
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2. Properties of Power Series

2.1. Radius of convergence

Theorem 7. Let
∑

n=0
∞

an (x− x0)
n be a power series.

a) If the power series converges for x1 ∈R, then it converges absolutely for every x satisfying
|x − x0| < |x1 − x0|. Furthermore the convergence is uniform on [x0 − r, x0 + r] for every

0< r < |x1−x0|;

b) If the power series diverges for x2∈R, then it diverges for every x∈R satisfying |x−x0|>
|x2−x0|.

Exercise 4. Show that the strict inequalities (|x− x0|<|x1− x0|, |x− x0|> |x2− x0|) cannot be replaced by 6,

>. (Hint:3)

Proof. We prove a) and leave b) as an exercise.

By the root test, we see that the convergence of
∑

n=0
∞

an (x1− x0)n implies

limsup
n→∞

|an (x1−x0)n|1/n 6 1 =⇒
(

limsup
n→∞

|an|1/n

)

|x1− x0|6 1. (43)

Now if |x− x0|< |x1−x0| we have

(

limsup
n→∞

|an|1/n

)

|x− x0|< 1 (44)

and absolute convergence follows from the root test.

Now for any 0 < r < |x1 − x0|, take x3 such that r < |x3 − x0| < |x1 − x0|. Then for any
x∈ [x0− r, x0 + r], we have

an |x− x0|n + ···+ am |x−x0|m = an |x3−x0|n ·
∣

∣

∣

∣

x− x0

x3− x0

∣

∣

∣

∣

n

+ ···+ am |x3−x0|m ·
∣

∣

∣

∣

x−x0

x3−x0

∣

∣

∣

∣

m

6

∣

∣

∣

∣

x−x0

x3− x0

∣

∣

∣

∣

n

· [an |x3− x0|n + ···+ am |x3− x0|m] (45)

from which uniform convergence easily follows. Left as exercise. �

Exercise 5. Let
∑

n=0

∞

an(x−x0)n and
∑

n=0

∞

an yn be two power series. Prove that
∑

n=0

∞

an(x−x0)n converges

3. Consider
∑

n=0
∞ (−x)n.
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at x if and only if
∑

n=0

∞

an yn converges at y = x−x0. (Hint:4 )

Exercise 6. Finish the proof of a). (Hint:5 )

Exercise 7. Prove b).

Exercise 8. Prove the above theorem using the comparison test instead of the root test.

Corollary 8. (Radius of convergence) Let
∑

n=0
∞

an (x−x0)
n be a power series. Then there

is R∈ [0,∞] (note that ∞ is included!) such that

• If |x−x0|<R, the series is absolutely convergent. Furthermore for any 0<r < ρ, the series
is uniformly convergent on [x0− r, x0 + r];

• If |x− x0|> R, the series is divergent.

• If |x− x0|= R, the series may or may not be convergent.

This R is called the “radius of convergence” for the power series. Furthermore we have

R−1 = limsup
n→∞

|an|1/n. (46)

Exercise 9. Prove the corollary.

Exercise 10. Find the radius of convergence for the following power series:

∑

n=1

∞

(x− 3)n

n
,

∑

n=1

∞

xn

n!
,

∑

n=1

∞

(−x)n,
∑

n=1

∞

(n!) xn. (47)

(Ans:6 )

2.2. Continuity, differentiation, integration

Let
∑

n=0
∞

an (x − x0)
n be a power series with radius of convergence R ∈ [0, ∞]. Then f(x) =

∑

n=0
∞

an (x− x0)
n is defined at least on (x0−R, x0 +R).7

Theorem 9. (Continuity) f(x) is continuous on (x0−R,x0 +R).

Exercise 11. Prove the above theorem. (Hint:8 )

4. Root test.

5. By (44) we have an rn uniformly bounded.

6. 1,∞, 1, 0.

7. When the power series converges at one or both the end points, the situation is subtle and will be discussed later.

8. For any x∈ (x0−R, x0 + R), there is r < R such that |x− x0|< r. But the convergence on [x0− r, x0 + r] is uniform.
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Theorem 10. (Differentiability) f(x) is differentiable on (x0−R,x0 + R). Furthermore

f ′(x) =
∑

n=0

∞
nan (x−x0)n−1 =

∑

n=0

∞
(n+1) an (x−x0)n. (48)

Exercise 12. Prove the above theorem. (Hint:9)

Corollary 11. f(x) is infinitely continuously differentiable on (x0−R,x0 +R). Furthermore

f (k)(x) =
∑

n=k

∞
n (n− 1) ··· (n− k +1) an (x−x0)

n−k. (49)

Exercise 13. Prove the corollary.

Theorem 12. (Integrability) f(x) is integrable on [a, b] ⊂ (x0 − R, x0 + R). Furthermore for
any a∈ (x0−R, x0 +R), there holds

∫

x0

a

f(x) dx =
∑

n=0

∞
an

n+1
(x−x0)n+1. (50)

Example 13. Calculate
∑

n=1
∞

nxn.

Solution. It is easy to see that the radius of convergence is R = 1, and the series diverges at x=−1, 1. Thus in the

following we only consider x∈ (−1, 1).

Recall that for such x,

∑

n=1

∞

xn =
1

1− x
=⇒

∑

n=1

∞

n xn−1 =
1

(1− x)2
. (51)

Therefore

∑

n=1

∞

n xn =
x

(1− x)2
(52)

for all x∈ (−1, 1).

Now taking x = 1/2, 1/3 we obtain

∑

n=1

∞

n

2n
= 2,

∑

n=1

∞

n

3n
=

3

4
. (53)

Exercise 14. Prove

∑

n=1

∞

(−1)n−1xn

n
= ln (1+ x); arctan x =

∑

n=0

∞

(−1)n

2n +1
x2n+1. (54)

for x∈ (−1, 1). (Hint:10 )

9. Observe that
∑

n=0
∞ (n + 1) an (x− x0)

n has the same radius of convergence.

10. Differentiate term by term.
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3. Power Series Representation of Functions

In this section we settle the theoretical issues raised in the two motivating applications of
Introduction.

3.1. Function and its Taylor expansion

Let f(x) be infinitely differentiable at x0. Then we can write its Taylor expansion:

f(x)∼ f(x0)+ f ′(x0) (x− x0) +
f ′′(x0)

2!
(x−x0)

2 + ···=
∑

n=0

∞
f (n)(x0)

n!
(x− x0)

n. (55)

Now the question is, what is the relation between f(x) and the power series
∑

n=0
∞ f(n)(x0)

n!
(x−x0)n?

Lemma 14. If f(x) =
∑

n=0
∞

an (x−x0)
n for all x∈ (x0−R, x0 +R) for some R > 0, then

an =
f (n)(x0)

n!
. (56)

Proof. From the assumption we know that the radius of convergence
∑

n=0
∞

an (x−x0)
n is at least

R. Now according to the differentiability of power series,

f (k)(x0) =
∑

n=0

∞
dk[an (x−x0)n]

dxk
|x=x0 =(k!) ak (57)

and the conclusion follows. �

Corollary 15. If there are a< b such that
∑

n=0
∞

an (x−x0)
n =0 for all x∈ (a, b), then ∀n∈N,

an = 0.

Exercise 15. Prove: If
∑

n=0

∞

an (x − x0)
n =

∑

n=0

∞

bn (x − x0)
n for all x ∈ (a, b) where x0 ∈ (a, b), then an = bn

for all n. (Hint:11 )

Thus if f(x) equals a power series, then this power series must be its Taylor expansion. However
the converse claim does not hold.

Example 16. Let

f(x) =

{

exp (−1/x2) x=/ 0
0 x= 0

. (58)

Then its Taylor expansion is
∑

n=0
∞ 0 ·xn which obviously sum up to 0 =/ f(x) for all x=/ 0.

Proof. By definition of derivative we have

f ′(0) = lim
x→0

exp (−1/x2)− 0
x

= lim
t→∞

t e−t2 = 0 (59)

thanks to L’Hospitale.
On the other hand we have

f ′(x) =
2
x3

exp (−1/x2), x=/ 0. (60)

11. Setting x = x0 we have a0 = b0. Take derivative and then set x = x0 we have a1 = b1. Prove by induction.
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This gives

f ′′(0) = lim
x→0

2

x3 exp (−1/x2)− 0

x
= lim

t→∞
2 t4 exp (−t2) = 0 (61)

again thanks to L’Hospitale.

In general, we can prove by induction that

f (k)(x)=

{

P (1/x) exp (−1/x2) x=/ 0
0 x= 0

(62)

where P is a polynomial. �

Example 17. Let

f(x) =
∑

n=0

∞
sin (2n x)

n!
. (63)

It is easy to prove that f(x) is infinitely differentiable. However its Taylor expansion has radius of
convergence 0.

Exercise 16. Prove that f(x) is infinitely differentiable. (Hint:12 )

Exercise 17. Prove that its Taylor expansion has radius of convergence 0. (Hint:13 )

3.2. A sufficient condition

Theorem 18. Let x0∈R and R > 0. Let f(x): (x0−R,x0 + R) 7→R. Assume

∃M > 0, ∀n∈N, ∀x∈ (x0−R, x0 +R)
∣

∣f (n)(x)
∣

∣< Mn, (66)

then

f(x) =
∑

n=0

∞
f (n)(x0)

n!
(x− x0)n (67)

in (x0−R, x0 +R). Note that here R could be ∞.

Proof. Left as exercise. �

Exercise 18. Prove the theorem. (Hint:14 )

Exercise 19. Can you obtain a similar theorem with weaker assumption? Justify.

12. Prove limn→∞

m

(n!)1/n
= 0 for any fixed m. To do this, divide n!=[ n (n − 1) ···(2 m)][(2 m − 1)···1] . Thus

m

(n!)1/n

<
m

(2m)(n−2m)/n

.

13. Direct calculation gives

f(2k+1)(0)=
∑

n=0

∞

(22k+1)n

n!
= exp (22k+1). (64)

Then prove

lim
n→∞

[

exp (2n)
n!

]

1/n

> lim
n→∞

exp (2n/n)
n

=∞ (65)

14. Apply Taylor expansion with Lagrange type of remainder. Note that (67) is not a consequence of the radius of

convergence being infinity! See Example 16.
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Example 19. The following holds for all x∈R:

ex =
∑

n=0

∞
1
n!

xn; (68)

sinx =
∑

k=0

∞
(−1)k

(2 k +1)!
x2k+1; (69)

cosx =
∑

k=0

∞
(−1)k

(2 k)!
x2k.

Example 20. Find the Taylor expansion of arctanx at x =0.
We notice that

(arctanx)′=
1

1 +x2
= 1−x2 +x4− ··· |x|< 1. (70)

Integrate termwise, we have

arctanx =
∑

n=0

∞
(−1)n

2 n+ 1
x2n+1. (71)

For now this holds for |x|< 1.

Remark 21. (71) still holds at |x|= 1. This is a consequence of Theorem 24 (Abel’s Theorem).

3.3. Sum and product of power series

Theorem 22. Let
∑

n=0
∞

an (x−x0)
n,
∑

n=0
∞

bn(x−x0)
n be power series with radius of convergence

R1, R2. Denote on (x0−R1, x0 +R1) and (x0−R2, x0 +R2), respectively,

f(x)=
∑

n=0

∞
an (x−x0)n; g(x) =

∑

n=0

∞
bn(x−x0)n. (72)

Let R =min {R1, R2}. Then for any x∈ (x0−R, x0 +R), we have

f(x)± g(x) =
∑

n=0

∞
(an ± bn) (x−x0)

n; f(x) g(x) =
∑

n=0

∞
cn (x−x0)

n (73)

where cn = a0 bn + a1 bn−1 + ···+ an b0.

Exercise 20. In the above theorem we choose the index n to start from 0 to make the presentation simple.
Explain why this is so.

Proof. Left as exercise. �

Exercise 21. Prove the above theorem.

Example 23. We have

1

(1−x) (2− x)
=
∑

n=0

∞ (

1− 1

2n+1

)

xn, x∈ (−1, 1); (74)

ln (1− x)
1−x

= −
∑

n=0

∞ (

1 +
1
2

+ ···+ 1
n

)

xn, x∈ (−1, 1). (75)

The proofs are left as exercises.

Exercise 22. Justify every step in the solution of Airy’s equation in Introduction.
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4. Finer Properties and Topics

4.1. Abel’s Theorem

Theorem 24. (Abel) Consider power series
∑

n=1
∞

an (x − x0)
n with radius of convergence

R∈ (0,∞). Denote its sum by S(x).

• If
∑

n=1
∞

an Rn converges, then

lim
x→(x0+R)−

S(x) = S(x0 +R); (76)

• If
∑

n=1
∞

an (−R)n converges, then

lim
x→(x0−R)+

S(x) =S(x0−R). (77)

Proof. We only prove the first claim and leave the second as exercise.
We prove that in this case the convergence on [x0, x0 +R] is in fact uniform. Write

∑

n=1

∞
an (x− x0)

n =
∑

n=1

∞
an Rn

(

x− x0

R

)n

. (78)

The conclusion then follows from Abel’s test for uniform convergence. �

Exercise 23. Prove the other case.

Example 25. Calculate

1− 1
2

+
1
3
− 1

4
+ ···; 1− 1

3
+

1
5
− 1

7
+ ··· (79)

Solution.

For the first one we notice
∑

n=1

∞
(−1)n−1xn

n
= ln (1 +x). (80)

By Abel’s theorem we have

∑

n=1

∞
lim
x→1

[

(−1)n−1 xn

n

]

= lim
x→1

[ln (1 +x)] = ln 2. (81)

For the second one we notice

arctanx =
∑

n=0

∞
(−1)n

2 n+1
x2n+1 (82)

and therefore the sum is π/4.

4.2. Generating functions

The theory of power series form the foundation of the method of “generating functions” which is
very useful in combinatorics, difference equations, probability theory, etc..

Definition 26. (Generating function) Let {an} be a sequence. Call the power series

∑

n=0

∞
an xn = a0 + a1 x+ ··· (83)
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its generating function.

Example 27. Prove
∑

k=0

n
(

n

k

)

2
=
(

2 n

n

)

. (84)

Proof. Notice that the generating function for
(

n

0

)

, ...,
(

n

n

)

is (1 + x)n. Now
∑

k=0
n (

n

k

)

2 =
∑

k=0
n (

n

k

)(

n

n− k

)

is the coefficient of the xn term in (1 +x)n · (1 + x)n. Thus ends the proof. �

Exercise 24. Let p, q, n∈N. Prove

∑

k=0

n
(

p+ k

p

)(

q + n− k

q

)

=
(

p + q + n + 1
p + q + 1

)

. (85)

(Hint: 15)

Example 28. Find the general formula for an defined through

a0 = 0, a1 =1, a2 =−1, an =−an−1 + 16 an−2− 20an−3. (86)

Solution. Let f(x) be its generating function. Then we have

f(x) =x−x2 + ··· (87)

and satisfies

(1 + x− 16x2 + 20x3) f(x) = x=⇒ f(x) =
x

1 + x− 16x2 + 20x3 . (88)

The general formula can then be obtained through partial fraction.

Exercise 25. Finish the calculation for the above example. (Answer: 16)

4.3. Uniform approximation

In 1885, Weierstrass proved the following.

Theorem 29. Let f : [a, b] 7→ ∞ be continuous. Then for every ε > 0, there is a polynomial P (x)
such that

∀x∈ [a, b], |f(x)−P (x)|<ε. (90)

Exercise 26. Prove that, if for every ε > 0, there is a polynomial P (x) such that

∀x∈ [a, b], |f(x)−P (x)|< ε, (91)

then f(x) is continuous on [a, b].

Proof. We will prove the case [a, b] = [0, 1] and furthermore f(0)= f(1)=0, and leave the general
case as exercise.

15. Consider (1− x)−(p+1), (1− x)−(q+1).

16. an =
1
7

(n + 1) 2n − 1
49

2n+1 +
(−1)n+1

49
5n+1. (89)
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Consider Qn(x) :=
[

∫

−1

1
(1−x2)n dx

]−1
(1−x2)n. Then Qn is a polynomial and satisfies

∫

−1

1

Qn(x) dx= 1. (92)

On the other hand, it is easy to prove that

∫

−1

1

(1− x2)n dx > 2

∫

0

1/ n
√

(1−nx2) dx >
1

n
√ =⇒ cn < n

√
. (93)

Now define

f̃ (x) :=

{

f(x) x∈ [0, 1]
0 elsewhere

(94)

and

Pn(x)=

∫

−1

1

f̃ (x + t) Qn(t) dt. (95)

It can be shown that Pn(x) is a polynomial. Now we have

∣

∣Pn(x)− f̃ (x)
∣

∣=

∣

∣

∣

∣

∫

−1

1
[

f̃ (x+ t)− f̃ (x)
]

Qn(t)

∣

∣

∣

∣

6

∫

−1

1
∣

∣f̃ (x+ t)− f̃ (x)
∣

∣Qn(t) dt. (96)

For any ε > 0, since f̃ (x) is uniformly continuous, there is δ > 0 such that

∀|t|<δ,
∣

∣f̃ (x+ t)− f̃ (x)
∣

∣<
ε

2
. (97)

On the other hand, we have

∀|x| ∈ [δ, 1], Qn(x) < n
√

(1− δ2)n. (98)

Thus
∫

−1

1
∣

∣f̃ (x + t)− f̃ (x)
∣

∣Qn(t) dt <
ε

2
+4 M n

√
(1− δ2)n (99)

where M :=maxx∈[0,1] |f(x)| and the conclusion follows. �

Exercise 27. Prove the general case.

Exercise 28. Prove that f̃ (x) is uniformly continuous.

Exercise 29. Prove that Pn(x) is a polynomial.

Exercise 30. Fill in the details for the last step.

Remark 30. For those who knows the Dirac δ-function and convolution, please notice that Qn(x)

approximates the Dirac δ function, and Pn is defined as the convolution of f̃ (x) and Qn(x).

Exercise 31. (For those to whom the above remark makes sense) Prove the theorem using a different sequence

of Qn(x).
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5. More Exercises and Problems

5.1. Basic exercises

Exercise 32. (USTC3) Find the radius of convergence for the following power series, and study their
convergence/divergence at the ends points. In the following a, b > 0.

∑

n=1

∞

(n!)2

(2 n)
xn;

∑

n=1

∞ (

1+
1

n

)

n2

xn;
∑

n=1

∞ (

1+
1

2
+ ···+ 1

n

)

xn (100)

∑

n=1

∞ (

an

n
+

bn

n2

)

xn;
∑

n=1

∞

xn

an + bn
;

∑

n=1

∞

(−1)n

n!

(

n

e

)n

xn. (101)

(For the last one you need Stirling’s formula) (Ans:17 )

Exercise 33. (USTC3) Let R1, R2 be the radii of convergence for
∑

n=0

∞

an xn and
∑

n=0

∞

bn xn, respectively.
Prove

a) The radius of convergence R3 for
∑

n=0

∞

(an + bn) xn satisfies R3 >min (R1, R2);

b) The radius of convergence R4 for
∑

n=0

∞

(an bn)xn satisfies R4 > R1 R2;

c) Show through examples that in both cases > may hold.

Exercise 34. (USTC3) Calculate

∑

n=0

∞

x2n+1

2 n + 1
;

∑

n=0

∞

(−1)n−1 x2n+1

2n +1
;

∑

n=1

∞

xn

n (n +1)
. (102)

Justify your calculation. (Hint:18 )

Exercise 35. (USTC3) Prove the following for x∈ (−1, 1).

∑

n=0

∞

(n +1) (n + 2) xn =
2

(1− x)3
;
∑

n=1

∞

n3 xn =
x+ 4 x2 + x3

(1− x)4
. (103)

Exercise 36. Let k ∈N∪{0}. The Bessel function of order k is defined as

Jk(x) =
∑

n=0

∞

(−1)n

n! (n + k)!

(

x

2

)

2n+k
. (104)

a) Calculate the radius of convergence of the series on the RHS;

b) Show that
d
dx

[xk Jk(x)] =xk Jk−1(x);
d
dx

[x−k Jk(x)]=−x−k Jk+1(x). (105)

Justify your answers;

c) Prove that Jk(x) solves the equation

x2 y ′′ + x y ′ + (x2− k2) y = 0. (106)

Note that a “proof” involves more than formally substituting the series into the equation and do termwise
differentiation.

5.2. More exercises

Exercise 37. Let α∈R. Through studying the expansion of (1+ x)α, prove the following generalized binomial

expansion:

(x + y)α = xα +
∑

n=1

∞

α (α− 1)··· (α−n + 1)

n!
yn xα−n. (107)

17. 0, e−1, 1, [max{|a|, |b|}]−1,max{|a|, |b|}, 1.

18. Termwise differentiation for the first two; For the last one multiply by x and then differentiate twice.
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Exercise 38. Show that Abel’s Theorem does not hold for general infinite series of functions.

Exercise 39. (USTC3) Prove the following:

1− 1

4
+

1

7
− 1

10
+ ···= 1

3

(

π

3
√ + ln 2

)

; 1− 1

5
+

1

9
− 1

13
+ ···= 1

4 2
√

(

π + 2 ln
(

2
√

+1
))

. (108)

Exercise 40. (USTC3) Use
∫

0

1
tn−1 (1− t) dt =

1

n (n + 1)
to prove

1 +
1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ ···= π

4
+

1

2
ln 2. (109)

Exercise 41. Show that there is no f satisfying both of the following:

• There is a sequence of numbers {an} such that

f(x) =
∑

n=0

∞

an xn x∈ (−1, 1); (110)

• f
( 1

n

)

=
(−1)n

n
.

(Hint:19 )

Exercise 42. Show that there is no f satisfying both of the following:

• There is a sequence of numbers {an} such that

f(x) =
∑

n=0

∞

an xn x∈ (−1, 1); (111)

• f
( 1

n

)

=
sin n

n2 .

What if we replace sin n by sin
( 1

n

)

sin n?

5.3. Problems

Problem 1. (USTC3) Determine the points of convergence for the following infinite series:

∑

n=0

∞

1

2n + 1

(

1− x

1 + x

)n

;
∑

n=1

∞ (

1 +
1

n

)

−n2

e−nx;
∑

n=1

∞ (

1

x

)n

sin
(

π

2n

)

. (112)

Justify your answers.

Problem 2. (USTC3) Let an > 0 for all n. Let the radius of convergence of
∑

n=0

∞

an xn be R. Prove

lim
x→R−

∑

n=0

∞

an xn =
∑

n=0

∞

an Rn. (113)

Note that R could be ∞ and the limit could also be infinity. Use this to prove
∑

n=1

∞ 1

n
=∞.

Problem 3. (USTC3) Let cn :=a0 bn +a1 bn−1+ ···+an b0. Assume all three infinite series
∑

n=0

∞

an,
∑

n=0

∞

bn,
∑

n=0

∞

cn are convergent. Then
∑

n=0

∞

cn =

(

∑

n=0

∞

an

)(

∑

n=0

∞

bn

)

. (114)

Problem 4. (USTC3) Let f be infinitely differentiable on [0, a] for some a > 0. Further assume f and all its

derivatives are non-negative on [0, a]. Prove that

∀x∈ [0, a), f(x)=
∑

n=0

∞

f (n)(0)

n!
xn. (115)

Problem 5. (USTC3) Let f : [a, b] 7→R be continuous. Assume

∀n∈N∪{0},
∫

a

b

xn f(x) dx = 0, (116)

19. Use intermediate value theorem to show the existence of xn→ 0 such that f(x0)= 0. Then prove all an = 0. Note that

since f equals a power series on (−1, 1) it is necessarily continuous and therefore f(0) = 0.
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then f(x) = 0 on [a, b]. (Hint:20)

Problem 6. (USTC3) Let f :R 7→R. If for every ε > 0, there is a polynomial P (x) such that

∀x∈R, |f(x)−P (x)|<ε, (117)

then f(x) is a polynomial.

Problem 7. (Euler) In his 1734 paper De progressionibus harmonicis observationes (Observations on harmonic
progressions)21, Leonhard Euler did the following manipulations on harmonic-type series. Comment on his

methods and results. If the results are right while the methods are not, give correct proofs of the results.
He considered “not simple harmonic progressions but combined with geometric ones”

s =
c

a
x +

c

a + b
x2 + ··· (118)

Multiply by b x(a−b)/b and differentiates, sum the resulting geometric series and then integrate:

s=
c

b x(a−b)/b

∫

x(a−b)/b

1− x
dx. (119)

Similarly, if

t =
f

g
xm +

f

g + h
x2m + ··· (120)

Euler obtained

t =
f m

h xm(g−h)/h

∫

x(mg−h)/h

1− xm
dx. (121)

Taking a = b = c = f = g = h = 1, he obtained

s− t = ln

(

1−xm

1− x

)

= ln (1+ x + ···+ xm−1). (122)

Taking m =2 he obtained

ln (1 + x) = x− x2

2
+ ···. (123)

Setting x= 1 he obtained

ln 2 = 1− 1
2

+
1
3
− ··· (124)

Setting m= 3 and then x= 1 he obtained a similar formula for ln 3.
Euler set h = 2 , a = b = g = c = 1, f = 2 and m= n to obtain

(

x+
x2

2
+

x3

3
+ ···

)

−
(

2 xn

1
+

2x2n

3
+ ···

)

= ln

(

1− xn

(1− x) (1+ xn)

)

. (125)

Taking n = 2 and x =0 he reached

0 = 1− 3

2
+

1

3
+

1

4
+

1

5
− 3

6
+ ···. (126)

20. Prove
∫

a

b
f(x)2 dx =0.

21. Comm. Acad. Sci. Imp. Petropol. 7 (1734/5) 1740, 150-161.
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