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1. Limits of Sequence and Series of Functions

1.1. Questions to be answered

Consider a domain A⊆RN and fn(x):A 7→R. Assume that for every x∈A, the limit limn→∞f(x)
exists, then we can define a new function

f(x): A 7→R (1)

through

∀x∈A, f(x) := lim
n→∞

fn(x). (2)

Now it is natural to ask: What properties of f can be inferred from those of fn? In particular,

• If fn are all continuous, is f continuous?

• If fn are all differentiable, is f differentiable?

• If fn are all differentiable and f is also differentiable, what is the relation between derivatives
of f and those of fn?

• If fn are all integrable, is f integrable?

• If fn are all integrable and f is also integrable, what is the relation between
∫

A
f(x) dx and

∫

A
fn(x) dx?

Similarly, we can consider a function series
∑

n=1
∞

un(x). If for each x∈A,
∑

n=1
∞

un(x) converges as

a real infinite series, then
∑

n=1
∞

un(x) defines a function A 7→R. Now we can ask the same questions

about the relations between properties of un(x) and those of u(x).

1.2. Examples

Example 1. Let A := [0, 1] and fn(x) = xn. Then each fn is differentiable (in fact infinitely
differentiable) but

f(x) := lim
n→∞

fn(x)=

{

0 0 6x < 1
1 x= 1

. (3)

It is not continuous.

Exercise 1. Let A := [0, 1], fn(x)= e−n2x2

. Find limn→∞fn(x).

Example 2. Let fn(x) =
sinn x

n
√ . Then

f(x)= lim
n→∞

fn(x)= 0. (4)
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However fn
′(x) = n

√
cosnx whose limit is not f ′(x).

Example 3. Let A := [0, 1]. Let fn(x) := limm→∞ cos ((n!) π x)2m =

{

1 (n!) x∈Z

0 elsewhere
. Then each

fn(x) is integrable on [0, 1] but

f(x) := lim
n→∞

fn(x) =

{

1 x∈Q

0 x∈/ Q
(5)

is not integrable.

Example 4. Let A := [0, 1] and fn(x) = nx (1−x2)n. Then we have

f(x)= lim
n→∞

fn(x)= 0. (6)

But

lim
n→∞

∫

0

1

fn(x) dx =
1
2

=/ 0 =

∫

0

1

f(x) dx. (7)

Exercise 2. Construct similar examples for
∑

n=1

∞
un(x). (Hint:1 )

Exercise 3. Can you find fn(x, y):R2 7→R such that

lim
n→∞

fn(x, y) = f(x, y), lim
n→∞

∂fn(x, y)
∂x

=
∂f(x, y)

∂x
(8)

but limn→∞
∂fn(x, y)

∂y
=/

∂f(x, y)

∂y
? Justify. (Hint:2 )

Note. From the above examples we see that even when A is a compact interval the situation is
already complicated enough. Therefore in the following, we will take A to be a closed interval [a, b]
(or an open interval (a, b)) so that we can focus on the limiting process of fn. Most results can be

generalized to A⊆RN more or less straightforwardly, at least for A reasonably nice.

1. Set un = fn − fn−1.

2. Take fn to be independent of x.
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2. Uniform Convergence

Note that in the following all functions are defined on a closed interval [a, b], unless otherwise stated.

2.1. Uniform convergence for sequences

Definition 5. (Uniform convergence) Let {fn(x)} be a infinite sequence of functions defined
on A⊆RN. Say fn(x)−→ f(x) uniformly, if and only if

∀ε > 0, ∃N ∈N, ∀x∈A, ∀n >N , |f(x)− fn(x)|<ε. (9)

Exercise 4. Prove that none of the sequences in last section’s examples converge uniformly.

Exercise 5. Let fn(x) converge uniformly. Is it true that {fn(x)} must be uniformly bounded (∃M >0, ∀n∈N,

∀x∈ [a, b], |fn(x)|< M)? (Hint:3 )

Exercise 6. Prove that the convergence 1+ x+ x2 + ···= 1/(1− x) is not uniform on (−1, 1). (Hint:4 )

We compare:

Convergence.

∀x∈A, ∀ε > 0, ∃N ∈N, ∀n >N , |f(x)− fn(x)|<ε; (10)

Uniform convergence.

∀ε > 0, ∃N ∈N, ∀x∈A, ∀n > N , |f(x)− fn(x)|< ε. (11)

The only difference is the position of “∀x ∈ A”. More specifically, in “uniform convergence”,
the “speed” of convergence, quantified by N , is a function of ε only, while in “convergence”,
N =N (ε,x) – it can change if x changes. Thus in “uniform convergence” the speed of convergence
is “uniform” with respect to x.

Convergence vs Uniform convergence.

2.1.1. Continuity

Theorem 6. Let fn(x) be continuous on [a, b] for every n. Assume fn(x)→ f(x) uniformly. Then
f(x) is continuous on [a, b].

Proof. Let ε > 0 and x0∈ [a, b] be arbitrary. Since fn(x)−→ f(x) uniformly, there is N ∈N such
that for all n >N , supx∈E |fn(x)− f(x)|<ε/3.

Now since fN+1(x) is continuous, there is δ > 0 such that

∀|x− x0|< δ =⇒|fN+1(x)− fN+1(x0)|<ε/3. (12)

Thus for the same δ, we have for every |x−x0|<δ,

|f(x)− f(x0)| 6 |f(x)− fN+1(x)|
+|fN+1(x)− fN+1(x0)|
+|fN+1(x0)− f(x0)|

< ε. (13)

3. No. Take fn(x)=
1

x
− 1

n
.

4. Denote fn(x)= 1+x + ···+ xn−1 =
1− xn

1− x
. Thus |f(x)− fn(x)|= xn

1− x
. Now for any N , take x=

(

1

2

)

1/n
. Then we have

|f(x)− fn(x)|> 1

2
.
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Thus ends the proof. �

Exercise 7. Let fn(x) be continuous at x0∈ [a, b]. Assume fn(x)−→ f(x) on [a, b]. Give a sufficient condition for

the continuity of f(x) at x0. Your condition should be weaker than “fn(x)−→ f(x) uniformly on [a, b]”. Justify
your claim. (Hint:5 )

Exercise 8. Show through an example that the above theorem is sufficient but not necessary. (Hint:6 )

2.1.2. Differentiability

Theorem 7. Let fn(x) be differentiable on [a, b] and satisfies:

i. There is x0∈E such that fn(x0) convergens;

ii. fn
′(x) converges uniformly to some function ϕ(x) on [a, b];

Then

a) fn(x) converges uniformly to some function f(x) on [a, b];

b) f ′(x)= ϕ(x) on [a, b].

Proof.

a) First we show that ∀x ∈ [a, b], fn(x) converges. It suffices to show that the sequence fn(x)
is Cauchy.

Let ε > 0 be arbitrary. Take N0∈N such that for all n >N0,

∀x∈ [a, b], |fn
′(x)− ϕ(x)|< ε

4 (b− a)
. (14)

On the other hand, since fn(x0)−→ f(x0), there is N1∈N such that for all m, n >N1,

|fn(x0)− fm(x0)|< ε

2
. (15)

Now take N =max {N0,N1}. We have, for any m, n > N ,

|fn(x)− fm(x)| 6 |fn(x0)− fm(x0)|
+|(fn(x)− fn(x0))− (fm(x)− fm(x0))|

<
ε

2
+ |fn

′(ξ)− fm
′ (ξ)| |b− a|<ε. (16)

Thus there is f(x) defined on [a, b] such that fn(x)−→ f(x). The proof of uniformity is left
as exercise.

b) We consider
fm(x)− fm(x0)

x− x0
− fn(x)− fn(x0)

x− x0
= fm

′ (ξ)− fn
′(ξ). (17)

Thus we have
fn(x)− fn(x0)

x− x0
−→ f(x)− f(x0)

x−x0
(18)

uniformly in x. Now define

Fn(x) :=







fn(x)− fn(x0)
x− x0

x=/ x0

fn
′(x0) x=x0

; F (x) :=







f(x)− f(x0)
x− x0

x =/ x0

ϕ(x0) x =x0

(19)

We see that Fn(x)→F (x) uniformly. As every Fn(x) is continuous, F (x) is also continuous
which means f ′= ϕ. �

5. There is δ > 0 such that fn(x)−→ f(x) uniformly on [a, b]∩ (x0− δ, x0 + δ).

6. fn(x)= xn on [0, 1).
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Exercise 9. Finish the proof of a). (Hint:7 )

Exercise 10. Prove that
fn(x)− fn(x0)

x−x0
−→ f(x)− f(x0)

x− x0
(20)

is uniform with respect to x. (Hint:8 )

Exercise 11. Show that it is not enough to assume only fn
′(x)−→ ϕ(x) without uniformity. (Hint: 9 )

Exercise 12. Show through example that the conditions in the above theorem is sufficient but not necessary.
(Hint: 10).

2.1.3. Integrability

Theorem 8. Let fn(x) be Riemann integrable on [a,b] for every n. Assume fn(x)→ f(x) uniformly.
Then f(x) is Riemann integrable on [a, b] and

lim
n→∞

∫

a

b

fn(x) dx =

∫

a

b

f(x) dx. (21)

Proof. Left as exercise. �

Exercise 13. Prove the theorem.

Exercise 14. Study fn(x)= 2 n2 x e−n2x2

with respect to the above theorems.

Exercise 15. Study fn(x)=
n x

1 + n2 x2 with respect to the above theorems.

2.1.4. Checking uniform convergence

Theorem 9. Let A ⊆ RN. Let {fn(x)} be a infinite sequence of functions defined on A. Then
fn(x)−→ f(x) uniformly on E if and only if limn→∞Mn =0 where

Mn := sup
x∈A

|f(x)− fn(x)|. (22)

Exercise 16. Prove the above theorem.

Example 10. Prove that fn(x) :=
x

1+ n2 x
converges to 0 on R uniformly.

Proof. We have

Mn := sup
x∈R

∣

∣

∣

x

1+ n2 x

∣

∣

∣
<

1

n2
→ 0 (23)

and the conclusion follows. �

Theorem 11. (Cauchy criterion) Let E ⊆RN. Let {fn(x)} be a infinite sequence of functions
defined on E. Then fn(x)−→ f(x) uniformly on E for some f(x) defined on E if and only if

∀ε > 0, ∃N ∈N, ∀x∈E, ∀m, n >N , |fm(x)− fn(x)|<ε. (24)

Exercise 17. Prove the above theorem. (Hint:11 )

7. Take m−→∞ in (15). Then use the fact that N is independent of x.

8.
∣

∣

∣

fn(x)− fn(x0)

x −x0
− f(x)− f(x0)

x − x0

∣

∣

∣=
∣

∣

∣

[fn(x)− f(x)]− [fn(x0)− f(x0)]

x −x0

∣

∣

∣. Then apply MVT.

9. fn(x)= e−n2x2

.

10. fn(x)=
1

2 n
ln (1+ n2 x2)

11. First use the fact that {fn(x)} is Cauchy for every x to show the existence of f(x)= limn→∞fn(x). Then take m→∞
in (24) to prove uniform convergence.
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2.2. Uniform convergence for series

Definition 12. Let A ⊆RN. Let
∑

n=1
∞

un(x) be a infinite series of functions defined on A. Say
∑

n=1
∞

un(x) converges to f(x) uniformly, if and only if the partial sum Sn(x) :=
∑

k=1
n

uk(x)
converges to f(x) uniformly.

Theorem 13. Let A ⊆RN. Let
∑

n=1
∞

un(x) be a infinite series of functions defined on A. Then
∑

n=1
∞

un(x) converges uniformly if and only if limn→∞Mn = 0 where

Mn := sup
x∈A

|f(x)−Sn(x)| (25)

with Sn(x) :=
∑

k=1
n

uk(x).

Exercise 18. Prove the above theorem.

Exercise 19. Let
∑

n=1

∞
un(x) be uniformly convergent. Prove that un(x)−→ 0 uniformly.

Example 14. Prove that 1 +x+ x2 + ··· does not converge to
1

1− x
uniformly on (−1, 1).

Proof. We have

Mn := sup
x∈(0,1)

xn

1− x
=∞ (26)

and the conclusion follows. �

Exercise 20. Prove that 1+ x +x2 + ··· converges to 1

1− x
uniformly on (−a, a) for any 0< a < 1.

Exercise 21. Prove that
∑

n=1

∞ x

1 + n6x
converges uniformly on [0,∞).

Exercise 22. Prove that
∑

n=1

∞
n e−nx convergens uniformly on [δ, ∞) for any δ > 0, but does not converge

uniformly on (0,∞).

Theorem 15. (Properties of uniformly convergent series) Let
∑

n=1
∞

un(x) be a infinite
series of functions. Assume . Then

i. If
∑

n=1
∞

un(x) converges uniformly to f(x) and each un(x) is continuous, then f(x) is
continuous;

ii. If each un(x) is differentiable and

1.
∑

n=1
∞

un(x0) converges for some x0;

2.
∑

n=1
∞

un
′ (x) converges to ϕ(x) uniformly,

then

1.
∑

n=1
∞

un(x) converges uniformly to some f(x),

2. f is differentiable and f ′(x) = ϕ(x).

iii. If
∑

n=1
∞

un(x) converges uniformly to f(x) and each un(x) is integrable on [a, b], then f(x)
is integrable on [a, b] and furthermore

∑

n=1

∞ ∫

a

b

un(x) dx=

∫

a

b

f(x) dx. (27)

Exercise 23. Prove the above theorem.

Example 16. Let f(x) =
∑

n=0
∞ xn

3n cos (nπx2). Calculate limx→1f(x).

By the above theorem f(x) is continuous. Thus

lim
x→1

f(x) = f(1) =
3
4
. (28)
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3. Tests for Uniform Convergence for Series

3.1. The Weierstrass M-test

Theorem 17. (Weierstrass M-test) Let E ⊆RN and let
∑

n=1
∞

un(x) be a infinite series defined

on E. Assume that there is a non-negative convergent series
∑

n=1
∞

Mn such that

|un(x)|6 Mn (29)

for all x∈E. Then
∑

n=1
∞

un(x) converges uniformly on E.

Exercise 24. Prove the theorem. (Hint:12 )

Exercise 25. Prove that “∀n∈N” can be replaced by “∃N ∈N,∀n > N ”.

Example 18. The series
∑

n=1
∞ cos (n2 x)

n2 is uniformly convergent over any interval [a, b].

Proof. Since
∣

∣

∣

∣

cos (n2 x)

n2

∣

∣

∣

∣

6
1

n2
(30)

and
∑

n=1
∞ 1

n2 is positive and convergent, application of the M-test gives the result. �

Exercise 26. Prove that 1 + x + x2 + ··· converges to 1

1− x
uniformly on (−a, a) for any 0 < a < 1 using the M-

test. (Hint:13 )

Exercise 27. Prove that 1+x+ x2 + ··· converges to 1

1−x
uniformly on any (a, b) with a, b∈ (−1, 1). (Hint:14 )

Example 19. Prove that
∑

n=1
∞

x2 e−nx converges uniformly on (0,∞).

Proof. Set un(x) = x2 e−nx. Then we have, for x∈ (0,∞),

un
′ (x) = 0⇐⇒ 2 x e−nx −n x2 e−nx =0⇐⇒ x =

2
n

. (31)

It is clear that un
′ (x)>0 when x<

2

n
and un

′ (x)<0 when x>
2

n
. Therefore un(x) reaches its maximum

at x =
2

n
. Thus we have

0 <un(x) <

(

2
n

)

2

=⇒|un(x)|< 4

n2
. (32)

Application of the M-test now gives the uniform convergence. �

Exercise 28. Let 1< a < b. Prove that the Dirichleet series
∑

n=1

∞
n−s is uniformly convergent for s∈ [a, b].

Exercise 29. Let 0< b < 1. The series
∑

n=1

∞
rn cos (n θ) converges uniformly for r∈ [0, b] and θ ∈ [0, 2 π].

Problem 1. Consider
∑

n=1

∞
un(x). Assume that it satisfies

∃r ∈ (0, 1), ∀x∈ [a, b],

∣

∣

∣

∣

un+1(x)

un(x)

∣

∣

∣

∣

6 r. (33)

Does it follow that
∑

n=1

∞
un(x) converges uniformly? Justify your answer. If your answer is “no”, then furthermore

remedy the situation through an extra assumption. (Hint:15 )

12. Any ε > 0, take N ∈N such that
∑

m=N
∞

Mm < ε.

13. Mn = an.

14. Mn =max{|a|, |b|}n.

15. We need u1(x) to be bounded. That is ∃M > 0 such that |u1(x)|< M for all x.
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3.2. Dirichlet and Abel tests

Theorem 20. (Dirichlet’s test) Consider
∑

n=1
∞

un(x) with un(x) = an(x) bn(x). Assume:

1.
∑

k=1
n

bk(x) is uniformly bounded, that is ∃M >0 such that for all n∈N, |∑
k=1
n

bk(x)|<M;

2. For each x∈ [a, b], an(x) is decreasing;

3. an(x)−→ 0 uniformly as n−→∞.

Then
∑

n=1
∞

an(x) bn(x) converges uniformly on [a, b].

Proof. Denote Sn(x) :=
∑

k=1
n

bk(x). Let ε > 0 be arbitrary.
Since an(x)−→ 0 uniformly as n−→∞, there is N ∈N such that for all n > N , |an(x)|< ε

4 M
.

Now for any m >n > N , we have
∣

∣

∣

∣

∣

∑

k=n+1

m

an(x) bn(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k=n+1

m

ak(x) [Sk(x)−Sk−1(x)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k=n+1

m−1

[ak(x)− ak+1(x)]Sk(x) + am(x)Sm(x)− an+1(x) Sn(x)

∣

∣

∣

∣

∣

6
∑

k=n+1

m−1

|ak(x)− ak+1(x)| |Sk(x)|+ |am(x)| |Sm(x)|+ |an+1(x)| |Sn(x)|

6 M
∑

k=n+1

m−1

|ak(x)− ak+1(x)|+ ε

4
+

ε

4

= M
∑

k=n+1

m−1

[ak(x)− ak+1(x)]+
ε

2

= M [an+1(x)− am(x)] +
ε

2
< ε. (34)

Thus ends the proof. �

Exercise 30. Let an > 0, decreasing with limit 0. Then
∑

n=1

∞
an sin (n x) is uniformly convergent in any closed

interval not including a multiple of 2 π. (Hint:16 )

Exercise 31. State the above result for general intervals, not necessarily closed.

Theorem 21. (Abel’s test) Assume
∑

n=1
∞

bn(x) converges uniformly. Assume {an(x)} is

monotone for each fixed x and is uniformly bounded. Then
∑

n=1
∞

an(x) bn(x) converges uniformly.

Exercise 32. Prove the theorem.

Example 22. Prove
∑

n=1
∞ (−1)n−1 xn

n
converges uniformly on [0, 1].

Proof. We try to apply Abel’s Test. Take bn(x) =
(−1)n−1

n
and an(x) = xn. Then

∑

n=1
∞

bn(x)

converges uniformly. On the other hand, for any x ∈ [0, 1], xn monotonically decreasing with n.
Furthermore we have |xn|6 1 for all x∈ [0,1] and all n∈N. Thus we can apply Abel’s Test and the
conclusion follows. �

16. sinx+ ···+ sinn x =
1

sin (x/2)

[

sin
x

2
sinx+ sin

x

2
sin2 x + ···+ sin

x

2
sinn x

]

=
cos

x

2
− cos

(

n +
1

2

)

x

2 sin (x/2)
=

sin
n + 1

2
x sin

n x

2

sin (x/2)
.
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4. Advanced Topics, Notes, and Comments

4.1. Dini’s Theorem and termwise integration

Theorem 23. (Dini) Let a, b ∈ R. Let un(x) > 0 and be continuous on [a, b]. Assume S(x) =
∑

n=1
∞

un(x) is continuous on [a, b]. Then
∑

n=1
∞

un(x) converges uniformly.

Proof. Fix an arbitrary ε > 0. Take any x ∈ [a, b]. Since
∑

n=1
∞

un(x) = S(x), there is N (x) ∈N

such that
∣

∣

∣

∣

∣

S(x)−
∑

n=1

N(x)

un(x)

∣

∣

∣

∣

∣

< ε/3. (35)

Now as
∑

n=1
N(x)

un(x) is continuous, there is δ1(x) > 0 such that

∀|y −x|< δ1(x),

∣

∣

∣

∣

∣

∑

n=1

N(x)

un(y)−
∑

n=1

N(x)

un(x)

∣

∣

∣

∣

∣

< ε/3. (36)

As S(x) is continuous, there is δ2(x) > 0 such that

∀|y −x|<δ2(x), |S(x)−S(y)|<ε/3. (37)

Taking δ(x) :=min (δ1(x), δ2(x)), we have

∀y ∈ (x− δ(x), x+ δ(x)),

∣

∣

∣

∣

∣

S(y)−
∑

n=1

N(x)

un(y)

∣

∣

∣

∣

∣

<ε. (38)

As un(x) > 0, we have for all m > N(x),

∑

n=1

N(x)

un(y) 6
∑

n=1

m

un(y) 6S(y) =⇒∀y ∈ (x− δ(x), x+ δ(x)),

∣

∣

∣

∣

∣

S(y)−
∑

n=1

m

un(y)

∣

∣

∣

∣

∣

<ε. (39)

Thus we have proved:

For every x∈ [a, b], there is δ(x) > 0 and N (x)∈N such that

∀n > N(x), ∀y ∈ (x− δ(x), x + δ(x)),

∣

∣

∣

∣

∣

S(y)−
∑

k=1

n

uk(y)

∣

∣

∣

∣

∣

<ε. (40)

Since a, b are finite, [a, b] is compact, thus

[a, b]⊆∪x∈[a,b](x− δ(x), x + δ(x)) =⇒∃x1, ..., xl, [a, b]⊆∪i=1
l (xi − δ(xi), xi + δ(xi)). (41)

Now take N :=max{N (x1),N(x2), ...,N(xl)}. Take any n>N . For any x∈ [a, b], there is i∈{1, ..., l}
such that x ∈ (xi − δ(xi), xi + δ(xi)). Since n > N > N(xi), we have |S(x) −∑

k=1
n

uk(x)| < ε and
uniform convergence is proved. �

Exercise 33. Try to prove Dini’s theorem using proof by contradiction.
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Exercise 34. Prove Dini’s theorem as follows. Let ε > 0 be arbitrary. Define

En := {x∈ [a, b]| |S(x)− [u1(x) + ···+ un(x)]|< ε}. (42)

Let Cn := [a, b]−En. Prove that there is N ∈N such that Cn = ∅ for all n >N . (Hint:17 )

Exercise 35. Find counter-examples in the following situations.

a) The interval is not closed;

b) The interval is not bounded;

c) un(x) > 0 does not hold for all n∈N.

Theorem 24. Let un(x) > 0 be Riemann integrable on [a, b]. Then

∑

n=1

∞ ∫

a

b

un(x) dx =L

(

∑

n=1

∞
un(x), [a, b]

)

(43)

where L(f , [a, b]) denotes the lower integral of f(x) on [a, b].

Proof. Exercise. �

Corollary 25. Let un(x) > 0 be Riemann integrable on [a, b]. Assume S(x) =
∑

n=1
∞

un(x) is
Riemann integrable on [a, b]. Then term-wise integration is OK:

∑

n=1

∞ ∫

a

b

un(x) dx=

∫

a

b
(

∑

n=1

∞
un(x)

)

dx. (44)

Remark 26. We see that in some sense, the only obstacle for (44) to hold is the integrability of
S(x). This shows that Riemann integrability is too restrictive.

4.2. Product of infinite series

To study product and ratio of functions through infinite series, we need to first understand the
product of infinite series.

Let
∑

n=1
∞

an =A,
∑

n=1
∞

bn =B be absolutely convergent. Then the numbers am bn in whatever

order is also convergent, with limit A B.

Theorem 27. Let
∑

n=1
∞

an =A be absolutely convergent and
∑

n=1
∞

bn =B be convergent (may be

conditional). Define

cn = a1 bn + ···+ an b1. (45)

Then
∑

n=1
∞

cn converges to A B.

Remark 28.
∑

n=1
∞

cn is called the Cauchy product of
∑

n=1
∞

an and
∑

n=1
∞

bn.

17. Nested compact sets.
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Proof. We try to prove that

lim
m→∞

∣

∣

∣

∣

∣

∑

n=1

m

cn −
(

∑

n=1

m−1

an

)(

∑

n=1

m−1

bn

)
∣

∣

∣

∣

∣

=0. (46)

Since
∑

an is absolutely convergent, we can denote
∑

n=1
∞ |an| = M1 ∈R. Also since

∑

n=1
∞

bn is

convergent, its partial sums are bounded. There is M2∈R such that
∣

∣

∑

k=n+1
m

bk

∣

∣< M2 for all m,

n∈N.

Take any ε > 0. As
∑

n=1
∞

bn converges, there is N2∈N such that for any m > n >N2,

∣

∣

∣

∣

∣

∑

k=n+1

m

bn

∣

∣

∣

∣

∣

<
ε

2 M1
. (47)

On the other hand, there is N1∈N such that

∑

n>N1

|an|< ε

2M2
(48)

Now take N = N1 +N2. For any m >N , we have

∣

∣

∣

∣

∣

∑

n=1

m

cn −
(

∑

n=1

m−1

an

)(

∑

n=1

m−1

bn

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k=2

N1
(

ak

(

∑

l=m−k

m

bl

))
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

k=N1+1

m−1
[

ak

(

∑

l=m−k

m−k

bl

)]
∣

∣

∣

∣

∣

6
∑

k=2

N1
[

|ak|
∣

∣

∣

∣

∣

∑

l=m−k

m

bl

∣

∣

∣

∣

∣

]

+
∑

k=N1+1

m−1
[

|ak|
∣

∣

∣

∣

∣

∑

l=m−k

m

bl

∣

∣

∣

∣

∣

]

<
ε

2 M2

(

∑

k=2

N1

|ak |
)

+M1

(

∑

k=N1+1

m−1

|ak|
)

< ε. (49)

Now clearly

lim
m→∞

(

∑

n=1

m−1

an

)(

∑

n=1

m−1

bn

)

= A B (50)

and the conclusion follows. �

Example 29. Take an= bn=
(−1)n+1

n+ 1
√ . Then both

∑

n=1
∞

an and
∑

n=1
∞

bn are convergent but neither

is absolutely convergent. However we can show that |cn|> 1 and thus
∑

n=1
∞

cn is not convergent.
On the other hand, if we take

a1 =3, an = 3n−1; b1 =−2, bn =2n−1. (51)
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Then both
∑

n=1
∞

an and
∑

n=1
∞

bn diverge. However for n > 2,

cn = a1 bn + ···+ an b1 = 0. (52)

Thus
∑

n=1
∞

cn is absolutely convergent.

Exercise 36. Fill in the details of the argument in the example above.

Corollary 30. It is easy to prove that
∑

n=1
∞

dn converges where

dn := a1 bn + a2 bn + ···+ an bn + an bn−1 + ···+ an b1. (53)

4.3. Pathological functions

Example 31. (Tent function over Cantor set) We define fn(x) as follows:

f1(x) =







1
6

u0(3 (x− 1/2) +1/2) x∈ [1/3, 2/3]

0 elsewhere
. (54)

f2(x) = f1(x) +
1
3

[f1(3 (x− 1/6))+ f1(3 (x− 5/6))] (55)

and so on.

It is easy to see that fn(x) → f(x) uniformly which means f(x) is continuous. On the other
hand, f(x) is not differentiable at infinitely many points.

Example 32. (USTC3) Define u0(x) through:

u0(x) = |x| on
[

−1
2
,
1
2

]

, ∀x∈R, u0(x)= u0(x +1). (56)

Now define

uk(x) := 4−k u0(4
k x). (57)

It is easy to show that
∑

n=0
∞

un(x) converges uniformly and therefore to a continuous function,

denote it by S(x), since each un(x) is clearly continuous.

Now we prove that S(x) is nowhere differentiable. Take any x ∈ [0, 1). For each n we have a
unique integer sn such that

2 · 4n x∈ [sn, sn +1) =⇒ xn∈
[

sn

2 · 4n
,
sn + 1
2 · 4n

)

. (58)

Now take xn∈
[

sn

2 · 4n ,
sn + 1

2 · 4n

]

such that |xn −x0|=4−(n+1). We will prove that

lim
n→∞

f(xn)− f(x0)
xn −x0

(59)

does not exist.

Consider uk(xn)− uk(x0). When k >n, we have uk(x +4−k) = uk(x) for every x which means

k >n=⇒ uk(xn)−uk(x0) = 0. (60)
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Therefore

f(xn)− f(x0) =
∑

k=0

n

[uk(xn)− uk(x0)]. (61)

Consequently

f(xn)− f(x0)
xn − x0

=
∑

k=0

n
uk(xn)−uk(x0)

xn −x0
=
∑

k=1

n

pk (62)

where each pk is either 1 or −1.

Now observe that
∑

k=1
n

pk is odd(even) ⇐⇒ n is odd(even). Therefore the limit cannot exist.

Exercise 37. Does the proof still work if we replace 4 by some other numbers? Say 2 or 3?

Remark 33. The first such function was constructed by Karl Weierstrass (1815 - 1897) in 1872.
The above example was proposed by van der Waerden. Weierstrass’ original example is

∑

n=1

∞
bn cos (an πx) (63)

where b∈ (0,1) and a is an odd integer with a b> 1+
3 π

2
. Earlier in 1861, G. F. B. Riemann (1826

- 1866) proposed

∑

n=1

∞
sin (n2 x)

n2 (64)

as a candidate for a continuous function that is nowhere differentiable. This turns out to be a highly
nontrivial problem and was only settled in 1970.18 Unfortunately Riemann was wrong, but not by
much: his function is almost everywhere non-differentiable.

Exercise 38. Prove that both Riemann’s and Weierstrass’ functions are continuous.

Exercise 39. Plot the functions by van der Waerden, Weierstrass, and Riemann for different n, and imagine

what the limiting function would look like.

Remark 34. We see from the above remark that, although the basic idea is very simple: Add wilder
and wilder oscillations while at the same time make the series uniformly convergent (Riemann’s
proposal (64) is indeed the simplest function following this idea, as termwise differentiation leads
to a divergent series), however to carry out this idea rigorously is very difficult.

Note. See Chapter 4 of (Vilenkin: Story) for more such pathological functions.

4.4. A theorem about trignometric series

Theorem 35. Let bn > 0 be decreasing. Then a necessary and sufficient condition for the uniform
convergence of

∑

n=1
∞

bn sin (n x) in any interval is that limn→∞n bn =0.

18. Joseph Gerver, “The Differentiability of the Riemann Function at Certain Rational Multiples of π,”American Journal

of Mathematics, January 1970, pp. 33–55.
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Proof.

• Necessity. For any large m∈N, set x=
π

2 m
and let n=

[ m

2
+1
]

where [·] denotes the integer
part of the number. Now

∑

k=n

m

bk sin (k x) >bm

(

m

2
− 1
)

sin
(

π

4

)

(65)

and the conclusion follows.

• First, through Abel’s re-summation we can easily prove:

Abel’s lemma. If b1 > ···> bn > 0 and m6 a1 + ···+an 6M for all n∈N,
then

b1 m 6 a1 b1 + ···+ an bn 6 b1 M. (66)

Now for our problem notice that it suffices to consider the convergence on [0, π]. Consider

sn,m =
∑

k=n

m

bk sin (k x). (67)

Let µn =maxk>n (k bk). Then we have µn−→ 0 and is decreasing. Now consider

◦ If x> π/n, Abel’s lemma gives

|sn,m|6 bn
1

sin (x/2)
6

bn π

x
6n bn 6 µn. (68)

◦ If x6 π/m, we have

|sn,m|6 bn nx + ···+ bm mx 6 (m−n+1) µn x6 πµn. (69)

◦ If x∈ (π/m, π/n), we split

sn,m = sn,k + sk+1,m (70)

for some k to be decided later. Applying Abel’s lemma to the second term and sinθ6θ

to the first, we reach

|sn,m|6 k µn x +
bk+1 π

x
6 µn

[

k x+
π

(k + 1) x

]

. (71)

Now take k =
[ π

x

]

we reach

|sn,m|6 µn (π + 1). (72)

In fact we can apply the split method from the very start and thus do not need to discuss
the three cases. �

Remark 36. Such “splitting” is ubiquitous in proofs in harmonic analysis.

Exercise 40. Prove Abel’s lemma.

Exercise 41. Prove bn
1

sin (x/2)
6

bn π

x
.
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5. More exercises and problems

5.1. Basic exercises

5.1.1. Limits of functions and series

Exercise 42. (USTC3) For each of the following series, find all x∈R such that the series converges. Here x, y>0.

∑

n=1

∞
n− 1

n + 1

(

x

3x + 1

)n

;
∑

n=1

∞ (

x (x + n)

n

)n

;
∑

n=1

∞

n e−nx;
∑

n=1

∞
xn

1+ x2n
(73)

∑

n=1

∞
(n + x)n

nn+x
;

∑

n=1

∞
xn yn

xn + yn
;

∑

n=1

∞
xn

n + yn
;

∑

n=1

∞
ln (1+ xn)

np
. (74)

Exercise 43. Find bounded functions fn(x):R 7→R such that

lim
n→∞

fn(x) = f(x) (75)

for every x∈R but f(x) is not bounded. (Hint:19 )

Exercise 44. Can you find fn(x): R 7→ R such that limn→∞fn(x) = f(x), limn→∞fn
′(x) = f ′(x), but

limn→∞fn
′′(x) =/ f ′′(x)? Justify. (Hint:20 )

Exercise 45. Find fn(x), f(x): [0, 1] 7→ R with limn→∞fn(x) = f(x) for all x ∈ [0, 1], and satisfy one of the
following:

a) None of fn(x) is continuous, but f(x) is continuous;

b) None of fn(x) is differentiable, but f(x) is differentiable;

c) None of fn(x) is Riemann integrable on [0, 1], but f(x) is Riemann integrable on [0, 1].

(Hint:21 )

5.1.2. Uniform convergence

Exercise 46. (USTC3) Consider
∑

n=1

∞

(−1)n xn (1− x). (76)

Prove:

a) It converges absolutely on [0, 1];

b) It converges uniformly on [0, 1];

c) The following series does not converge uniformly on [0, 1].

∑

n=1

∞

|(−1)n xn (1− x)|. (77)

(Hint:22 )

Exercise 47. (Folland) Let fn(x) =x arctan (n x).

a) Prove that limn→∞fn(x) =
π

2
|x|;

b) Prove that limn→∞fn
′(x) exists for every x, including x = 0, but the convergence is not uniform in any

interval containing 0.

Exercise 48. Let A1, ...,Ak ⊆R be disjoint. Assume fn−→ f uniformly on each Ai. Prove that fn→ f uniformly
on A := A1∪ ··· ∪Ak. (Hint:23 )

19. fn(x)=min{|x|−1, n}.
20. fn(x)=

cos (n x)

n n
√ .

21. fn =
1

n
D(x) where D(x) is the Dirichlet function.

22. We have
∑

n=N
∞ |(−1)n xn (1 − x)| = (1 − x)xN

∑

n=0
N

xn = xN. Thus no matter what N is we can find x such that

xN > 1/2.
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Exercise 49. (Folland) Let fn be continuous on [a, b] and assume fn −→ f uniformly on (a, b). Prove that
fn −→ f uniformly on [a, b]. (Hint:24 )

Exercise 50. (Folland) Let f(x) =
∑

n=1

∞ 1

(x + n)2
. Prove that f is continuous on [0, ∞) and furthermore

∫

0

1
f(x) dx= 1.

5.1.3. Tests

Exercise 51. Let p > 1. Prove that
∑

n=1

∞
n−p sin (n2 x) converges uniformly on R. (Hint:25 )

Exercise 52. (USTC3) Let each un(x) be monotone on [a, b]. Assume the convergence of
∑

n=1

∞ |un(a)| and
∑

n=1

∞ |un(b)|. Prove that
∑

n=1

∞ |un(x)| converges uniformly. (Hint:26 )

Exercise 53. (USTC3) Consider

un(x) :=











1

n
x =

1

n

0 x =/
1

n

. (78)

Prove

a)
∑

n=1

∞
un(x) converges uniformly on [0, 1]; (Hint:27 )

b) There is no convergent positive series
∑

n=1

∞
an such that |un(x)|6 an.

Exercise 54. (USTC3) Prove that

f(x) :=
∑

n=1

∞

n e−nx (79)

is continuous on (0,∞). (Note that the convergence on (0,∞) is not uniform!) (Hint:28 )

Exercise 55. Calculate
∫

0

π
∑

n=1

∞
cosn x

n2
. (80)

Justify your answer.

Exercise 56. Calculate
(

sin (n2 x)
n6

)′′

. (81)

Justify your answer.

Exercise 57. (RIS) Prove that
∑

n=1

∞
(−1)n+1

nn
=

∫

0

1

xx dx. (82)

(Hint: See footnote29)

Exercise 58. Prove that the Riemann-ζ function

ζ(x) :=
∑

n=1

∞
1

nx
(83)

is continuous on (1, ∞). Furthermore prove that it is infinitely continuously differentiable, that is all orders of

derivatives exist and they are all continuous.

Exercise 59. Prove

lim
x→1

∑

n=1

∞
(−1)n−1

nx
=
∑

n=1

∞
(−1)n−1

n
= ln 2. (84)

(Hint: 30)

23. Take N =max{N1, ...., Nk}.
24. |fn(a)− f(a)|= limx→a |fn(x)− f(x)|. Apply Comparison theorem.

25. M-test.

26. Prove |un(x)|6max{|un(a)|, |un(b)|}.
27. Note that at any x there is at most one un(x) =/ 0.

28. For any x > 0, take δ < x and prove uniform convergence on [δ,∞).

29. Expand exlog x and integrate term by term.

30. Dirichlet.
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5.2. More exercises

Exercise 60. (USTC3) Study the uniform convergence of the following series.

∑

n=1

∞
1

(x + n) (x+ n +1)
on (0,∞); (85)

∑

n=1

∞
n x

(1+ x) (1+ 2x) ··· (1+ n x)
on (0, δ), (δ,∞); (86)

∑

n=1

∞
n x

1 +n2 x2
on (−∞,∞); (87)

∑

n=1

∞
n2

n!
√ (xn + x−n) on

(

1

2
, 2

)

; (88)

∑

n=2

∞

ln

(

1+
x

n (ln n)2

)

on (−a, a); (89)

∑

n=2

∞
(−1)n

n + sin x
on (0, 2π); (90)

∑

n=1

∞

2n sin
1

3n x
on (0,∞); (91)

∑

n=1

∞
sin x sin (n x)

n + x
√ on (0,∞). (92)

Exercise 61. (USTC3) Let S0(x)= 1 and define successively

Sn(x) = x Sn−1(x)
√

. (93)

Prove that Sn(x) converges uniformly on [0, 1].

Exercise 62. (Folland) Let fn(x) = g(x) xn where g(x) is continuous on [0, 1] with g(1) = 0. Prove that
fn(x)−→ 0 uniformly on [0, 1]. (Hint:31 )

Exercise 63. (Folland) Show that
∑

n=1

∞ 1

x2 − n2 converges uniformly on any [a, b] such that [a, b] ∩ (Z −
{0})= ∅. Then prove that the sum is continuous on R−{Z−{0}}.

Exercise 64. (Folland) Show that the series
∑

n=1

∞ (−1)n−1

x2 + n
converges uniformly onR, although the convergence

is conditional at every x.

Exercise 65. (Folland) Let {cn} be such that
∑

n=1

∞
cn converges. Consider the “Lambert series”

∑

n=1

∞

cn
xn

1− xn
, x=/ ±1. (94)

a) Show that the series converges absolutely and uniformly on [−a, a] for any a < 1;

b) Show that the series converges uniformly on (−∞, b] and [b,∞) for any b > 1, and that the convergence is
absolute if and only if

∑

n=1

∞ |cn|<∞. (Hint:32 )

Exercise 66. (USTC3) Assume
∑

n=1

∞
an converges. Prove that

∑

n=1

∞
an exp [−n x] converges uniformly in

[0,∞). Note that there is no condition on the sign of an.

Exercise 67. (USTC3) Let
∑

n=1

∞
un(x) be convergent on [a, b]. Assume that

∃M, ∀x∈ [a, b], ∀n,

∣

∣

∣

∣

∣

∑

k=1

n

uk
′ (x)

∣

∣

∣

∣

∣

6 M. (95)

31. For any ε > 0, there is δ > 0 such that |g(x)| < ε on [1 − δ, 1]. Now take N ∈ N such that (1 − δ)N M < ε where

M =max[0,1] |g(x)|.
32. When |x|>b > 1,

∣

∣

∣

xn

1−xn

∣

∣

∣ is uniformly bounded.
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Prove that
∑

n=1

∞
un(x) converges uniformly. Then apply this result to un(x) =

sin n x

n
and

cos n x

n
.

Exercise 68. Let f(x) =
∑

n=0

∞ xn

n!
. Show directly that f(x) f(y) = f(x + y).

Exercise 69. (Folland) Show that
∑

n=0

∞ (−1)n

(n + 1)1/2
converges conditionally, and the Cauchy product of this

series with itself diverges.

Exercise 70. (Folland) Prove that
∑

m,n=1

∞
1

(m + n)p
(96)

converges if and only if p > 2. (Hint:33 )

Exercise 71. (Folland) Let amn = 1 if m = n and −1 if m = n + 1, and 0 otherwise. Prove that
∑

n=0

∞
[
∑

m=0

∞
amn] and

∑

m=0

∞
[
∑

n=0

∞
amn] both converge but the sums are unequal.

5.3. Problems

Problem 2. We say fn(x) converges to f(x) weakly on R if and only if, for all functions φ∈C0
∞(R), that is φ

is infinitely differentiable, and there is R > 0 such that φ(x) = 0 for all |x|> R,

lim
n→∞

∫

R

fn(x) φ(x) dx =

∫

R

f(x) φ(x) dx. (97)

Note that the integrals are not improper. Find fn(x) such that

lim
n→∞

∫

R

fn(x) φ(x) dx = φ(0) (98)

for all φ∈C0
∞(R). So in some sense limn→∞fn(x)= δ(x) the Dirac delta function.34

Problem 3. Discuss the uniform convergence of the series

∑

n=1

∞

an x2 cos (n x). (99)

Problem 4. Generalize the continuity, differentiability, integrability theorems in the text to the case fn(x):
A⊆RN 7→R.

Problem 5. (USTC3) Let a, b∈R. Assume that
∑

n=1

∞
un(x)=S(x) on [a, b] and each un(x) is continuous and

non-negative on [a, b].

a) Prove that S(x) attains minimum on [a, b];

b) Must S(x) attain its maximum on [a, b]? Justify.

c) Does the conclusion still hold if [a, b] is not bounded?

d) Can the conclusion be generalized to replace [a, b] by arbitrary compact set?

Problem 6. Find a non-negative convergent series S(x) =
∑

n=1

∞
un(x) such that each un(x) is continuous but

S(x) is not. Can you find a positive convergent series with the same property?

Problem 7. Order Q as {r1, r2, ...}. Define

f(x) :=
∑

n=1

∞ |x− rn|
3n

. (100)

Prove that f(x) is continuous, differentiable at every irrational point, but not differentiable at every rational point.

Problem 8. What is the property of

f(x) :=
∑

n=1

∞

p−n u0(p
n x) (101)

33. Since amn > 0, it doesn’t matter how we sum it. Thus we can first sum up all terms with the same m + n first.

34. According to ??, the Dirac delta function: δ(x) = 0 for all x =/ 0 while
∫

R
δ(x) dx = 1, was in fact proposed by Oliver

Heaviside (1850 - 1925), who was kicked out of the Royal Society for this “academic sin”. The function’s acceptance by the

community was due to its application by Paul Dirac (1902 - 1984), the real-life Sheldon Cooper. See ??.
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where p > 1 and u0(x) is as defined in (56).

Problem 9. (USTC3) Let
∑

n=1

∞
an be convergent. Prove

lim
x→0+

(

∑

n=1

∞
an

nx

)

=
∑

n=1

∞

an. (102)

Last Update: March 6, 2014 21


	References
	1. Limits of Sequence and Series of Functions
	1.1. Questions to be answered
	1.2. Examples

	2. Uniform Convergence
	2.1. Uniform convergence for sequences
	2.1.1. Continuity
	2.1.2. Differentiability
	2.1.3. Integrability
	2.1.4. Checking uniform convergence

	2.2. Uniform convergence for series

	3. Tests for Uniform Convergence for Series
	3.1. The Weierstrass M-test
	3.2. Dirichlet and Abel tests

	4. Advanced Topics, Notes, and Comments
	4.1. Dini's Theorem and termwise integration
	4.2. Product of infinite series
	4.3. Pathological functions
	4.4. A theorem about trignometric series

	5. More exercises and problems
	5.1. Basic exercises
	5.1.1. Limits of functions and series
	5.1.2. Uniform convergence
	5.1.3. Tests

	5.2. More exercises
	5.3. Problems


