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1. Definitions and properties

1.1. Infinite series (Infinite sum)

Definition 1. (Infinite series) Given a sequence {an} of real numbers, the formal sum

∑

n=1

∞
an = a1 + a2 + ···+ an + ··· (1)

is called an “infinite series”.

Remark 2. Note that
∑

n=1
∞

an is just another way of writing the formal sum a1 + a2 + ··· +
an + ···. They mean exactly the same thing (which, up to now, is – nothing).

Remark 3. The “summation” in (1) of these infinitely many real numbers

a1 + a2 + ···+ an + ··· (2)

is “formal” because it is not clear what it means to say a1 + a2 + ···+ an + ···= s∈R. Essentially,
to define the “sum” of a1, ..., an, ... is to define a function

f :R×R× ··· ×R× ··· 7→R. (3)

This turns out to be a tricky task, as can be seen from the following example.

Example 4. Some examples of infinite series:

∑

n=1

∞
(−1)n =(−1) +1 + (−1)+ 1 + ··· (4)

∑

n=1

∞
sinn

n
=

sin 1
1

+
sin 2

2
+ ··· (5)

∑

n=1

∞
2n =1 + 2 +4 + ··· (6)

∑

n=1

∞
1
2n

=1 +
1
2

+
1
4

+ ··· (7)

It is intuitively clear that the value of
∑

n=1
∞ 1

2n should be 2 while
∑

n=1
∞ 2n should be ∞. It’s not

clear whether the first two sums correspond to any value. In particular, many different values can
be “reasonably”1 assigned to the first sum.

Example 5. (RIS, §6.3, Fallacy 7) Let
∑

n=1
∞

an be any infinite series. Let S ∈R be arbitrary.
We have

a1 =S − (S − a1); a2 =(S − a1)− (S − a1− a2); ... (8)

Everything cancel in the sum except S. Therefore S =
∑

n=1
∞

an.

Remark 6. For more such fallacious results, check out Chapter 6 of (RIS) .

1. Meaning: following accepted rules of adding finitely many numbers, such as grouping and re-arrangement.
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1.2. Convergence through partial sum

One good way of defining infinite sum is through the limit of partial sums.

Definition 7. (Partial sum and convergence) The nth partial sum of an infinite series
∑

n=1
∞

an is defined as sn =
∑

m=1
n

am. If the sequence {sn} converges to some real number s, then

we say the infinite series converges to s, or equivalently say its sum is s, and simply write

∑

n=1

∞
an = s. (9)

If s−→∞ or −∞, we say the infinite series diverges to ∞ or −∞ respectively and write

∑

n=1

∞
an =∞ or −∞. (10)

Remark 8. Note that

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, ... (11)

Recalling theorems for the convergence of sequences, we have

Theorem 9.

• ∑

n=1
∞

an = s if and only if for any ε > 0, there is N ∈N such that for all n > N,
∣

∣

∣

∣

∣

s−
∑

m=1

n

am

∣

∣

∣

∣

∣

< ε; (12)

• ∑

n=1
∞

an =∞ if and only if for any M ∈R, there is N ∈N such that for all n >N,

∑

m=1

n

am >M ; (13)

• ∑

n=1
∞

an =−∞ if and only if for any M ∈R, there is N ∈N such that for all n >N,

∑

m=1

n

am < M. (14)

Example 10. Prove that
∑

n=1

∞
1
2n

=1. (15)

Proof. By induction we can prove that

sn =1− 1
2n

(16)

and the conclusion easily follows. �

Example 11. Prove that
∑

n=1
∞ 1

n2 + n
converges and find the value.

Proof. By induction we can prove that

sn = 1− 1
n+ 1

(17)

4 Math 317 Week 01 Real Infinite Series



Therefore
∑

n=1
∞ 1

n2 + n
= 1. �

Exercise 1. Study the convergence/divergence of
∑

n=0

∞ 1

n + 1
√

+ n
√ . (Hint: 2).

Exercise 2. Prove the following:

i. A convergent series has a unique sum;

ii. If
∑

n=1

∞
an =A∈R∪ {±∞}, and c∈R, c =/ 0, then

∑

n=1

∞ (c an) = c A;

iii. If
∑

n=1

∞
an =A,

∑

n=1

∞
bn = B, then

∑

n=1

∞
(an + bn) = A +B;

1.3. Criteria for convergence

Theorem 12. (Cauchy) A infinite series
∑

n=1
∞

an converges to some s∈R if and only if for any

ε > 0 there is N ∈N such that for all m > n >N,

∣

∣

∣

∣

∣

∑

k=n+1

m

ak

∣

∣

∣

∣

∣

< ε. (18)

Exercise 3. Prove the above theorem. (Hint:3 )

Corollary 13. If
∑

n=1
∞

an converges to s∈R then limn−→∞an = 0. Equivalently, if limn→∞an

does not exist, or exists but is not 0, then
∑

n=1
∞

an does not converge to any real number.

Proof. For any ε > 0, since
∑

n=1
∞

an converges, it is Cauchy and there exists N1∈N such that for
all m >n > N1,

∣

∣

∣

∣

∣

∑

k=n+1

m

ak

∣

∣

∣

∣

∣

< ε. (19)

Now take N = N1 +1. Then for any n >N , we have n > n− 1 > N1 which gives

|an − 0|=
∣

∣

∣

∣

∣

∑

k=n

n

ak

∣

∣

∣

∣

∣

<ε. (20)

Thus by definition of convergence of sequence limn−→∞an = 0. �

Remark 14. The above corollary is very useful, however we should keep in mind that:

1. The converse is not true. That is limn→∞an=0 does not imply the convergence of
∑

n=1
∞

an.

2. It cannot be applied to conclude
∑

n=1
∞

an =/ ∞ or −∞.

Exercise 4. Give a counterexample to the following claims:

lim
n−→∞

an = 0=⇒
∑

n=1

∞

an = s for some s∈R. (21)

∑

n=1

∞

an = s∈Rext =⇒ lim
n−→∞

an = 0. (22)

2.
1

n + 1
√

+ n
√ = n + 1

√
− n

√

3. Recall Definition 7. Then check the Cauchy criterion for infinite sequence.
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(Hint:4 )

Example 15. Let an = c rn−1 for r, c∈R. Then

a) If |r |< 1, then
∑

n=1
∞

an =
c

1− r
.

b) If r > 1, then
∑

n=1
∞

an =







+∞ c > 0
0 c= 0
−∞ c < 0

.

c) If r 6−1, then
∑

n=1
∞

an does not exist (as extended real number).

Proof. We prove for c =1. The generalization is trivial.

a) We have
∑

m=1

n

am = 1+ ···+ rn−1 =
1− rn

1− r
. (23)

For any ε > 0, take N ∈N such that N > log|r | [ε (1− r)], then for any n > N ,

∣

∣

∣

∣

∣

1

1− r
−
∑

m=1

n

am

∣

∣

∣

∣

∣

=
|r |n
1− r

<
|r |N
1− r

< ε. (24)

b) For any M ∈R. Take N ∈N such that N > |M |. Then for every n >N we have

∑

m=1

n

am >
∑

m=1

n

1 =n > N > |M |> M. (25)

c) Since r 6 −1, |an| > 1. Therefore by Corollary 13
∑

n=1
∞

an does not converge to any

real number. We still need to show that
∑

n=1
∞

an =/ ∞, −∞. To do this, we show that

sn =
∑

m=1
n

an satisfies sn > 0 when n is odd and sn 6 0 when n is even. Clearly s1 = 1 > 0,
s2 =1 + r 6 0. For n> 3, calculate

sn =
∑

m=1

n−1

rm−1 + rn =
1− rn−1

1− r
+ rn. (26)

As r 6−1, 1− r > 2 which gives

∣

∣

∣

∣

1− rn−1

1− r

∣

∣

∣

∣

6
1 + |r |n−1

2
6 |r |n−1 6 |r |n. (27)

Therefore, sn and rn cannot take opposite signs. �

Example 16. We have
∑

n=1

∞
1

2n−1
=

1

1− 1

2

= 2;
∑

n=1

∞
1

5n−1
=

5
4
. (28)

4.
∑ 1

n
;
∑

1.
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2. Non-negative series

2.1. Convergence/divergence through comparison

In most situations, it is impossible – at least very hard – to explicitly calculate the partial sum
Sn :=

∑

m=1
n

am and it is therefore not possible to establish convergence/find the sum based on

definition only. One way to overcome this is through the following comparision theorem.

Theorem 17. (Comparison) Let
∑

n=1
∞

an and
∑

n=1
∞

bn be two infinite series. Assume that there

are c > 0 and N0∈N such that |an|6 c bn for all n >N0. Then

a)
∑

n=1
∞

bn converges =⇒ ∑

n=1
∞

an converges.

b)
∑

n=1
∞

an does not converge5 =⇒ ∑

n=1
∞

bn =∞.

Proof. Note that a) and b) are equivalent logical statements6, so we only need to prove a). We
show that

∑

n=1
∞

an is Cauchy. For any ε > 0, since
∑

n=1
∞

bn converges, it is Cauchy and there is

N1∈N such that for all m > n >N1,
∣

∣

∣

∣

∣

∑

k=n+1

m

bk

∣

∣

∣

∣

∣

<
ε

c
. (29)

Take N =max {N1,N0}. Then for any m > n >N ,

∣

∣

∣

∣

∣

∑

k=n+1

m

ak

∣

∣

∣

∣

∣

6
∑

k=n+1

m

|ak|6 c

∣

∣

∣

∣

∣

∑

k=n+1

m

bk

∣

∣

∣

∣

∣

< ε. (30)

So
∑

n=1
∞

an is Cauchy and therefore converges. �

Exercise 5. Show that the =⇒ in the above cannot be replaced by ⇐⇒. Also show that the absolute value is

necessary in |an|6 c bn. (Hint: 7)

Exercise 6. Let
∑

n=1

∞
an be a non-negative series. Then it converges ⇐⇒ it is bounded above. (Hint:8 )

Example 18. It is clear by the above theorem that if
∑

n=1
∞ |an| converges, so does

∑

n=1
∞

an. The

converse is not true, as can be seen from the following example:

Take an =
(−1)n+1

n
. Then we clearly see that

S2n =1− 1
2

+
1
3
− 1

4
+ ···+ 1

2 n− 1
− 1

2 n
=

1
1 · 2 +

1
3 · 4 + ···+ 1

(2 n− 1) (2 n)
(31)

5. Note that here it is not necessary for
∑

an to be ∞.

6. By the hypotheses in the Theorem, bn >0. See Exercise 6.

7. Consider an =−1/n2, bn = 1/n.

8. Thus the partial sum
∑

m=1
n

am is increasing and there are only two cases: bounded above or not.
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converges. On the other hand, we have S2n+1 − S2n −→ 0 so S2n+1 converges to the same limit.
From here it is easy to prove by definition that Sn−→ to the same limit, which turns out to be ln2.

Example 19. Prove that

∑

n=1

∞
1

n
√ =∞. (32)

Proof. We notice that

1

n
√ >

2

n
√

+ n +1
√ . (33)

The conclusion follows from
∑

n=1
∞ 2

n
√

+ n+ 1
√ =∞. �

Exercise 7. Prove the following “limit comparison test”.

Let
∑

n=1

∞
an,
∑

n=1

∞
bn be two non-negative series and further assume bn > 0. Assume that

lim
n→∞

an

bn

= L∈R∪ {+∞}. (34)

Then

i. If 0< L <∞, then
∑

n=1

∞
an,
∑

n=1

∞
bn both converge or both diverge;

ii. If L =∞ and
∑

n=1

∞
an converges, then

∑

n=1

∞
bn converges;

iii. If L = 0 and
∑

n=1

∞
an diverges, then

∑

n=1

∞
bn diverges.

Then improve the result using limsup and liminf . (Hint:9 )

Exercise 8. Apply the limit comparison test to study
∑

n=1

∞ 2n + n − 2

3n + 4 n − 5
.

Exercise 9. Can we drop the “non-negative” assumption in the above “limit comparison test”? (Hint:10 )

Remark 20. A sequence
∑

n=1
∞

an that converges but with
∑

n=1
∞ |an|=∞ is called conditionally

convergent . On the other hand, a sequence
∑

n=1
∞

an such that
∑

n=1
∞ |an| converges is said to be

absolutely convergent . Absolutely convergent sequences can undergo any re-arrangement and still
converge to the same sum but conditionally convergent sequences do not enjoy such property.

Exercise 10. Prove that if
∑

n=1

∞
an does not converge to some s∈R, then

∑

n=1

∞ |an|=∞.

Remark 21. (The plan) In light of the Theorem 17, it is important to study non-negative series,

that is infinite series
∑

n=1
∞

an satisfying an>0 for all n∈N. Once a non-negative sequence
∑

n=1
∞

bn

is shown to be convergent, we know that any
∑

n=1
∞

an satisfying |an| 6 c bn for some constant c

is also convergent. It is further possible to make this comparison “intrinsic”, that is design some
criterion involving an only while still guarantees the relation |an| 6 c bn. Such criteria are usually
called “tests”. We will study the simpliest tests in the following section.

9. For example, when 0 < L <∞, there is N ∈N such that for all n > N ,
L

2
<

an

bn

<
3 L

2
.

10. No. Consider an = 1/n, bn = (−1)n/ n
√

.
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2.2. Typical non-negative series and their implications

Example 22. (Geometric series) We have seen that
∑

n=1
∞

rn−1 converges when 06 r < 1. As

a consequence, if another series
∑

n=1
∞

an satisfies

|an|6 c rn−1 (35)

for some c > 0 and for all n > some N0∈N, then
∑

n=1
∞

an converges.

Example 23. (Generalized harmonic series/p-series) The series
∑

n=1
∞ 1

na converges when
a > 1 and diverges when a 6 1.

Proof. When a61, we have
1

na >
1

n
therefore it suffices to show the divergence of

∑

n=1
∞ 1

n
. We use

the following trick:11

1 >
1
2
, (36)

1
2

+
1
3

>
1
4

+
1
4

=
1
2
, (37)

1
4

+
1
5

+
1
6

+
1
7

>
1
8

+
1
8

+
1
8

+
1
8

=
1
2
, (38)

··· ··· ···

Therefore we have (recall sn is the partial sum)

snk
>

k +1
2

(39)

where nk =1+2+22+ ···+2k =2k+1−1. Therefore sn is not bounded and the series diverges to ∞.

When a > 1, we use the following trick:

1 6 1; (40)

2−a + 3−a < 2 · 2−a = 21−a; (41)

4−a +5−a + 6−a + 7−a < 4 · 4−a = 22(1−a); (42)
··· ··· ···

We see that

∑

n=1

N
1
na

<
∑

n=1

∞
(

2(1−a)
)

n−1 =
1

1− 21−a
<+∞. (43)

11. This proof is attributed to Nicole Oresme (c1320-1325 – 1382), whose motivation may be “If God were Infinity, then

divergent series would be His angels flying higher and higher to reach Him.” The result was re-proved many times, including

one in the book Tractatus de Seriebus Infinitis (Treatise on Infinite Series) by Jacob Bernoulli, who commented “So the soul

of immensity dwells in minutia. And in narrowest limits no limits inhere. What joy to discern the minute in infinity! The vast

to perceive in the small, what divinity!” (Quotes from Clifford A. Pickover, The MαTH βOOK, p.104.)

According to (Kline) the proof appeared in Oresme: Questiones Super Geometriam Euclidis (c. 1360).
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Thus this non-negative series is bounded from above and therefore converges. �

Remark 24. Usually the convergence/divergence of generalized harmonic series is studied through
the following relation between non-negative series and improper integrals.

Theorem. (Integral test) Consider a series
∑

n=1
∞

an. Assume there is a function

f : [1,∞) 7→R
+ such that f(n)=an. Further assume f to be integrable and decreasing.

Then

∑

n=1

∞
an converges if and only if

∫

1

∞
f(x) dx (44)

converges. Furthermore in the case of convergence, we have

∑

n=2

∞
an <

∫

1

∞
f(x) dx <

∑

n=1

∞
an. (45)

We see here that it can be done directly. It is also worth mentioning that the technique in the
above proof is a special case of the so-called Cauchy’s Condensation Test.

Exercise 11. Prove the “Integral test” theorem. (Hint:12 )

Remark 25. The same method can show that

∑

n=1

∞
1

n log (n +1)a
,
∑

n=1

∞
1

n log (n+ 1) log [log (n+1) +1]a
, ... (47)

converges when a > 1 and diverges when a 6 1.

Exercise 12. Prove that

∑

n=1

∞
1

n log (n + 1)a
(48)

is convergent for a>1 and divergent for a6 1 using two methods: Directly and through comparing against certain

improper integrals. (Hint:13 )

12. Notice

an 6

∫

n

n+1

f(x) dx 6an+1. (46)

13. For the direct proof, when a > 1, show that

∑

k=2n+1

2n+1

1
k log (k +1)a

62n

(

1
2n na

)

=
1
na

. (49)

Thus this positive series is bounded above.
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3. Tests

3.1. Ratio and root tests

The following two intrinsic “convergence tests” based on comparison with geometric series are the
simplest and most popular tests for convergence/divergence.

Theorem 26. (Ratio test) Let
∑

n=1
∞

an be a infinite series. Further assume that an =/ 0 for all

n∈N. Then

• If limsupn−→∞
∣

∣

∣

an+1

an

∣

∣

∣< 1, the series converges.

• If liminfn−→∞
∣

∣

∣

an+1

an

∣

∣

∣
> 1, the series diverges.

Proof.

• Assume limsupn−→∞
∣

∣

∣

an+1

an

∣

∣

∣
= L < 1. Set r =

L +1

2
and ε0 =

1−L

2
. By definition

limsup
n−→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n−→∞

{

sup
k>n

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

}

(50)

therefore there is N ∈N such that for all n >N ,
∣

∣

∣

∣

∣

sup
k>n

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

−L

∣

∣

∣

∣

∣

< ε0 (51)

which gives
∣

∣

∣

∣

sup
n>N

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

∣

∣

∣

∣

<L + ε0 = r < 1 =⇒ 0 <

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

<r < 1. (52)

This gives, for all n >N +1,

|an|< |aN+1| rn−N−1 =
|aN+1|

rN
rn−1. (53)

Note that since N is fixed, we have

|an|<c rn−1 (54)

for all n > N and consequently
∑

n=1
∞

an converges.

• Assume liminfn−→∞
∣

∣

∣

an+1

an

∣

∣

∣
=L> 1. Set ε0 =L− 1. Then by definition, similar to the limsup

case above, there is N ∈N such that for all n >N ,
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

> 1 (55)

which means for all n >N +1

|an|> |aN+1| (56)

As a consequence an−→0. By Corollary 13 we know that
∑

n=1
∞

an diverges. �

Example 27. Prove that
∑

n=1
∞ 1

n!
√ converges.

Proof. We have
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
1

n+ 1
√ (57)
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therefore

limsup
n−→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=0 < 1. (58)

So the series converges. �

Exercise 13. Let
∑

n=1

∞
an be a infinite series. Let

∑

n=1

∞
bn be the series obtained by dropping all 0’s from

{an}. Prove that
∑

n=1

∞

an = s⇐⇒
∑

n=1

∞

bn = s (59)

for s∈Rext. (Hint:14 )

Now use this result to generalize the ratio test to all infinite series without assuming an =/ 0.

Theorem 28. (Root test) Let
∑

n=1
∞

an be a infinite series. Then

• If limsupn−→∞ |an|1/n < 1, then the series converges.

Note that

both are

limsup !
Root test is

very special

in this

sense.

• If limsupn−→∞ |an|1/n > 1, then the series diverges.

Proof.

• Assume limsupn−→∞ |an|1/n = L < 1. Set r =
L + 1

2
and ε0 =

1−L

2
. Then by definition, as in

the proof of the above ratio test, there is N ∈N such that for all n > N ,

|an|1/n <r < 1 =⇒|an|<rn. (60)

Therefore
∑

n=1
∞

an converges.

• Assume limsupn−→∞ |an|1/n > 1. The proof is left as exercise. �

Remark 29. It turns out that for any sequence {xn},

liminf
n−→∞

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

6 liminf
n−→∞

|xn|1/n 6 limsup
n−→∞

|xn|1/n 6 limsup
n−→∞

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

. (61)

Therefore the root test is sharper than the ratio test, in the sense that any series that passes the
ratio test for convergence (or divergence) will also pass the root test.

Example 30. Consider the infinite series
1

2
+

1

3
+

1

22 +
1

32 + ··· =
∑

n=1
∞

an where an =
{

2−k n = 2 k − 1

3−k n = 2 k
. It can be easily verified that

liminf
n−→∞

an+1

an
= 0; limsup

n−→∞

an+1

an
=∞ (62)

so the ratio test does not apply. On the other hand

limsup
n−→∞

(an)
1/n =

1

2
√ (63)

so the root test tells us that the series converges.

3.2. Raabe’s test and Gauss’s test

Note that neither the ratio test nor the root test works for the generalized harmonic series.

Exercise 14. Verify this claim. (Hint:15 )

14. The partial sums of
∑

bn form a subsequence of the sequence of partial sums of
∑

an.
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Theorem 31. (Raabe’s Test) 16 Let
∑

n=1
∞

an be a positive infinite series. Then

• ∑

n=1
∞

an converges if

liminf
n−→∞

n

(

an

an+1
− 1

)

> 1 (64)

• ∑

n=1
∞

an diverges if

limsup
n−→∞

n

(

an

an+1
− 1

)

< 1. (65)

Exercise 15. Consider
∑

n=1

∞
1 · 3 · 5···(2 n− 1)

2 · 4 · 6···(2 n)
and

∑

n=1

∞
1 · 3 · 5···(2 n− 1)

2 · 4 · 6···(2 n) (n + 1)
. (66)

Prove that neither the ratio test nor the root test applies. Apply Raabe’s test to prove that the first one diverges
but the second one converges.

Exercise 16. Let p > 0. Prove that neither the ratio test nor the root test applies. Apply Raabe’s test to prove
that

∑

n=1

∞
p (p +1) ··· (p+ n− 1)

n!
(67)

diverges.

Exercise 17. Let x > 0. Study the series

∑

n=1

∞
n!

(x + 1) ··· (x + n)
. (68)

(Hint: 17)

Proof. We prove the convergence part and leave the other half as exercise.

Since liminfn−→∞n
(

an

an+1
− 1
)

> 1, there is β > 0 such that

n

(

an

an+1
− 1

)

> 1 + β (70)

for all n > some N0∈N. Thus we have for such n,

an

an+1
> 1 +

1 + β

n
. (71)

We prove that there is γ > 0 such that

1 +
1 + β

n
>

(

n+ 1
n

)

1+γ

(72)

for large n.

By MVT we have, for some ξ ∈
(

1,
n + 1

n

)

,

(

n+ 1
n

)

1+γ

= 1+ (1+ γ) ξγ 1
n

< 1 +2γ 1 + γ

n
. (73)

Now any γ such that 2γ (1 + γ) < 1 + β suffices.

15. limn→∞
(n + 1)a

na
= 1; limn→∞

(

1

na

)

1/n
= 1.

16. Joseph Ludwig Raabe, 1801 - 1859.

17. We have

n

(

an

an+1
− 1

)

=
n x

n +1
−→x. (69)

Therefore the series converges if x > 1 and diverges if x < 1. When x = 1 we have an =
1

n + 1
so the series also diverges in

this case.
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Now we have

an <

(

n− 1
n

)

1+γ

an−1 <

(

n− 2
n

)

1+γ

an−2 < ···< c

n1+γ
(74)

and converges follows. �

Exercise 18. Prove the other half:
∑

n=1

∞
an diverges if

limsup
n−→∞

n

(

an

an+1
− 1

)

< 1. (75)

Remark 32. Note that the “convergent” part of Raabe’s test can be turned into a convergence test
for general series (without requiring an > 0) as

liminf
n−→∞

n

(

|an|
|an+1|

− 1

)

> 1 =⇒
∑

n=1

∞
an converges (76)

but the divergent part cannot, that is

limsup
n−→∞

n

(

|an|
|an+1|

− 1

)

< 1 =⇒
∑

n=1

∞
an diverges (77)

is not true, for the following reason.
The convergence of

∑

n=1
∞ |an| implies the convergence of

∑

n=1
∞

an; But the divergence of
∑

n=1
∞ |an| does not imply the divergence of

∑

n=1
∞

an, as the example
∑

n=1
∞ (−1)n+1

n
shows

Note that Raabe’s Test is sharper than the ratio/root tests, due to the fact that
∑

n=1
∞ 1

na

converges/diverges slower than the geometric series. If we consider even slower convergent series,

such as
∑

n=1
∞ 1

n (log (n + 1))a , we can obtain even sharper test such as the following.

Theorem 33. (Gauss’s Test) 18Let
∑

n=1
∞

an be a positive infinite series. Further assume we can

write
an+1

an
=1− β

n
+

θn

n1+κ
(78)

where {θn} is a bounded sequence and κ > 0. Then

i. If β > 1, then
∑

n=1
∞

an converges;

ii. If β 6 1, then
∑

n=1
∞

an diverges.

Proof. See Theorem 2.12 of (RIS) . Note that the only new situation here is β = 1. �

Remark 34. It is possible to design even finer tests using the convergence (for a > 1)/divergence
(for a 6 1) of

∑

n=1

∞
1

n log (n+ 1) log (log (n+1) +1) ···log(···(log (n+1) +1)···+1)a
. (79)

The results form the so-called Bertrand’s Tests. See §2.4 of (RIS) .

18. Karl Friedrich Gauss (1777 - 1855).
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4. Advanced Topics, Notes, and Comments

4.1. Abel’s formula

Example 35. Consider
∑

n=1

∞
sinn

n
=

sin 1
1

+
sin 2

2
+ ··· (80)

We show that it actually converges. Consider the partial sum

Sm =
∑

k=n+1

m
sin k

k
. (81)

Denote Ak =
∑

l=1
k sin l, and Bk =

1

k
. Then we have

∑

k=n+1

m
sin k

k
=

∑

k=n+1

m

(Ak −Ak−1) Bk

= [An+1 Bn+1−An Bn+1] + [An+2 Bn+2−An+1 Bn+2] + ···
+[Am Bm −Am−1 Bm]

= [Am Bm−An Bn+1] +

+[An+1 (Bn+1−Bn+2) +An+2 (Bn+2−Bn+3)+ ···+Am−1 (Bm−1−Bm)]

= [Am Bm−An Bn+1] +
∑

k=n+1

m−1

[Ak (Bk −Bk+1)]

=

[

Am

m
− An

n+1

]

+
∑

k=n+1

m−1 [

Ak

(

1
k
− 1

k +1

)]

. (82)

Now notice that {An} is in fact a bounded sequence:

An = sin 1 + sin 2 + ···+ sinn

=
sin 1 [sin 1 + sin 2 + ···+ sinn]

sin 1

=
cos (1− 1)− cos (1 + 1)+ cos (2− 1)− cos (2 +1) + ···+ cos (n− 1)− cos (n+1)

2 sin 1

=
[cos0 + cos 1 + ···+ cos (n− 1)]− [cos 2 + cos 3+ ···+ cos (n+1)]

2 sin 1

=
cos 0 + cos 1− cosn− cos (n+1)

2 sin 1
. (83)

Now it is clear that |An|6 2

sin1
for all n∈N.

Back to (82):
∣

∣

∣

∣

∣

∑

k=n+1

m
sin k

k

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

Am

m

∣

∣

∣

∣

+

∣

∣

∣

∣

An

n+1

∣

∣

∣

∣

+
∑

k=n+1

m−1

|Ak|
(

1
k
− 1

k +1

)

6
2

sin 1

[

1
m

+
1

n+ 1
+
∑

k=n+1

m−1 (
1
k
− 1

k +1

)

]

=
2

sin 1

[

2
n+1

]

=
4

(n +1) sin 1
. (84)
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Now we are ready to show the series is Cauchy:

For any ε > 0, take N ∈N such that N + 1>
4

ε sin1
, then for any m >n > N , we have

∣

∣

∣

∣

∣

∑

k=n+1

m
sin k

k

∣

∣

∣

∣

∣

6
4

(n+1) sin 1
<

4
(N + 1) sin 1

6 ε. (85)

Therefore the series converges.

Exercise 19. Prove the following Abel summation formula: Let Ak =
∑

l=1

k
al, Bk =

∑

l=1

k
bl, then

∑

k=n+1

m

ak Bk = [Am Bm −An Bn+1]−
∑

k=n+1

m−1

Ak bk+1 (86)

Draw analogy to the formula of integration by parts:
∫

a

b

f(x) G(x) dx= [F (b) G(b)−F (a) G(a)]−
∫

a

b

F (x) g(x) dx (87)

where F (x) =
∫

a

x
f(t) dt, G(x)=

∫

a

x
g(t) dt.

Exercise 20. Prove that if
∑

n=1

∞
an converges, then so does

∑

n=1

∞ an

n
. (Hint:19 )

Theorem 36. Consider
∑

n=1
∞ (−1)n an with an > 0. If

i. There is N0∈N such that for all n >N0, an+1 6 an;

ii. limn→∞an =0;

then
∑

n=1
∞ (−1)n an converges to some s∈R.

Exercise 21. Prove the theorem. (Hint:20 )

4.2. Conditionally convergent series

Recall that a series
∑

n=1
∞

an is called “conditionally convergent” if it is convergent, but
∑

n=1
∞ |an|=

∞. Otherwise it is called “absolutely convergent”.

Example 37. (Grouping) Unless an > 0 (or all 60) and
∑

n=1
∞

an converges, the order of

summation cannot be changed. For example let an = (−1)n+1. If we are allowed to group terms
together and sum them first, we would have both

∑

n=1

∞
an =1 + (−1) +1 + ···=1 + [(−1) +1] + [(−1) +1] + ···=1 +0 + 0 + ···= 1; (89)

∑

n=1

∞
an =1 + (−1)+ 1 + ···= [1 + (−1)] + [1 + (−1)] + ···= 0 +0 + 0 + ···= 0. (90)

Definition 38. (Rearrangement) A rearrangement of an infinite series
∑

n=1
∞

an is another

infinite series
∑

m=1
∞

an(m) where m: 7→n(m) is a bijection from N to N.

19. Denote Sn :=
∑

1
n

am. Then there isM >0 such that for all n∈N, |Sn|<M . Nowwe can show the series is Cauchy through

∣

∣

∣

∣

∣

∣

∑

k=n+1

m
ak

k

∣

∣

∣

∣

∣

∣

=
∑

k=n+1

m
Sk −Sk−1

k
=

∣

∣

∣

∣

∣

∣

− Sn

n + 1
+

Sm

m
+

∑

k=n+1

m−1

Sk

(

1
k
− 1

k + 1

)

∣

∣

∣

∣

∣

∣

6
|Sn|
n + 1

+
|Sm|
m

+
∑

k=n+1

m−1

|Sk|
(

1
k
− 1

k +1

)

. (88)

20. Apply Abel’s formula to the partial sums.
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Example 39. An example of rearrangement of a1+a2+a3+ ··· is a2+a4+a7+a1+a5+a3+a6+ ···.

Exercise 22. Prove that if
∑

n=1

∞
an = s is absolutely convergent, then any re-grouping or re-arrangement give

the same sum. (Hint:21 )

Example 40. (Rearrangement) Consider the sequence
∑

n=1
∞

an with an =
(−1)n+1

n
. If we are

allowed to freely rearrange (that is choose the order of summation), then for any s∈R∪{−∞,∞},
there is a rearrangement such that it converges to s.

Proof. Consider the case s∈R. The cases s=∞,−∞ are left as exercises.
Consider the rearrangement

∑

n=1
∞

bn defined as follows:

• Let k0 be such that 1 +
1

3
+ ···+ 1

2 k0− 1
> s but 1 +

1

3
+ ···+ 1

2 k0− 3
<s. Set

b1 =1, b2 =
1
3
, ..., bk0 =

1
2 k0− 1

; (92)

The case k0 = 1 is when 1 > s. Then we just set b1 = 1 and turn to the next step.

• Let k1 be such that

∑

k=1

k0

bk −
(

1
2

+ ···+ 1
2 k1− 2

)

> s,
∑

k=1

k0

bk −
(

1
2

+ ···+ 1
2 k1

)

< s (93)

and set

bk0+1 =−1
2
, bk0+k1 =− 1

2 (k1 + 1)
. (94)

• Let k2 be such that

∑

k=1

k0+k1

bk +

(

1
2 k0 + 1

+ ···+ 1
2 k0 +2 k2− 1

)

> s,
∑

k=1

k0+k1

bk +

(

1
2 k0 +1

+ ···+ 1
2 k0 + 2 k2− 3

)

<

s (95)

and set

bk0+k1+1 =
1

2 k0 + 1
, ..., bk0+k1+k2 =

1
2 k0 + 2 k2 +1

, (96)

• And so on.

Now set

Sl =
∑

k=1

k0+k1+···+kl

bk. (97)

Then we see that if n∈ [k0 + ···+ kl, k0 + ···+ kl+1], then

sn =
∑

m=1

n

bm (98)

21. For re-grouping, not that the convergence of the re-grouped series is equivalent to the convergence of a subsequence Snk

of the partial sums Sn. The conclusion follows from, for any n > nk,

|Sn −Snk
|6

∑

m=nk+1

n

|am|. (91)

For re-arrangement, first prove that any positive convergent series can be re-arranged without changing the sum. Then

consider
∑

n=1
∞ |an|+ an and

∑

n=1
∞ |an|.
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is always between Sl and Sl+1.

Finally notice that by construction, |Sl−s|< 1

l
. Thus for any ε>0, take L∈N such that L>ε−1.

Now set N = k0 + ···+ kL. For any n > N , there is l > L such that n∈ [k0 + ···+ kl, k0 + ···+ kl+1].
Therefore we have

|sn − s|6max {|Sl − s|, |Sl+1− s|}6
1
l

6
1
L

<ε. (99)

That is
∑

n=1
∞

bn−→ s by definition. �

Remark 41. Note that the above proof depends on the fact that

∑

k=1

∞
1

2 k − 1
=∞,

∑

k=1

∞ (

− 1
2 k

)

=−∞. (100)

Exercise 23. Prove the above two facts. (Hint:22 )

Theorem 42. Let
∑

n=1
∞

an be a series whose terms go to 0. Then exactly one of the following holds:

• ∑

n=1
∞

an converges absolutely;

• All re-arrangements diverge to ∞;

• All re-arrangements diverge to −∞;

• The series can be re-arranged to sum to any r ∈R∩{∞,−∞}.

Proof. Problem 12. �

4.3. There is no ultimate test

We prove here that a “ultimate” test does not exist. More specifically, we cannot find the “largest
convergent series” nor the “smallest divergent series”.

Theorem 43. (RIS Gem 47, 48, CMJ, 28:4, pp. 296 - 297)

a) Let
∑

n=1
∞

an be a convergent series of positive terms. Then there exists another convergent

series
∑

n=1
∞

An that decreases more slowly in the sense that

lim
n→∞

An

an
=∞. (101)

b) Let
∑

n=1
∞

Dn be a divergent series of positive terms. Then there exists another divergent

series
∑

n=1
∞

dn that is smaller in the sense that

lim
n→∞

Dn

dn
=∞. (102)

Proof.

a) Let rn := an + ···. Then we have rn ց 0. Now define

An :=
an

rn
α . (103)

22. Comparison with
∑ 1

n
.
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for any α∈ (0, 1). Then we have

∑

n=1

N

An =
∑

n=1

N
1
rn
α (rn − rn+1) 6

∫

0

r1 1
tα

dt. (104)

Since this bound is uniform in N , we see that
∑

n=1
∞

An converges.

b) Let Sn :=D1+ ···+Dn, then Sn−→∞ since
∑

Dn diverges. Define dn =
Dn

Sn
. Then we have

∑

k=n+1

m

dk >
∑

k=n+1

m
Dk

Sm
=

Sm −Sn

Sm
= 1− Sn

Sm
. (105)

Since limn→∞Sn =∞, for any n∈N, there is m∈N such that
Sn

Sm
<

1

2
. Thus

∑

n=1
∞

dn is not
Cauchy and cannot converge. �

4.4. Infinite product

Consider the product of infinitely many real numbers:

∏

n=1

∞
pn := p1 · p2 · p3···. (106)

Definition 44. We say the infinite product
∏

n=1
∞

pn converges if and only if Pn= p1···pn converges
Note the

s=/ 0!
to s∈R, s=/ 0. We say

∏

n=1
∞

pn diverges if and only if it does not converge.

Exercise 24. Prove that
1

2
· 1

2
··· diverges.

Exercise 25. Prove that, if
∏

n=1

∞
pn converges, then limn→∞pn =1. (Hint:23 )

Exercise 26. Prove that, if
∏

n=1

∞
pn converges, then there is N ∈N such that for all n > N , pn > 0. (Hint:24 )

Example 45.
∏

n=1
∞

(

1− 1

n2

)

=
1

2
.

Proof. We have

Pn =

(

1− 1
2

)(

1 +
1
2

)(

1− 1
3

)(

1 +
1
3

)

···= 1
2

(

1 +
1
n

)

. (107)

The conclusion follows. �

Exercise 27. Let |x|< 1. Prove that
∏

n=1

∞

(1+ x2n−1

) =
1

1− x
. (108)

Now we consider writing pn = 1 + an with an >−1. From the exercises following Definition 44
we see that this is reasonable.

Exercise 28. Prove that if
∏

n=1

∞
(1 + an) converges, then limn→∞an = 0.

23. Take ln or prove directly.

24. Otherwise Pn “oscillates”.
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Theorem 46. The infinite product
∏

n=1
∞ (1 + an) converges if and only if the infinite series

∑

n=1
∞ ln (1 + an) converges. Furthermore in this case we have

∏

n=1

∞
(1 + an) = exp

[

∑

n=1

∞
ln (1 + an)

]

. (109)

Exercise 29. Prove the theorem.

Theorem 47. If there is N ∈N such that ∀n > N, an > 0, then

∏

n=1

∞
(1 + an) converges⇐⇒

∑

n=1

∞
an converges. (110)

Proof. When an > 0 we have an > ln (1 + an) > 0 which gives ⇐=.

For =⇒ we notice that the convergence of
∏

n=1
∞ (1 + an) gives limn→∞an = 0 which implies

lim
n→∞

ln (1 + an)
an

= 1. (111)

From this it is easy to obtain
∑

n=1
∞ ln (1 + an) converges =⇒ ∑

n=1
∞

an converges. �

Exercise 30. Prove that, if there is N ∈N such that ∀n > N , an < 0, then

∏

n=1

∞

(1+ an) converges⇐⇒
∑

n=1

∞

an converges. (112)

Definition 48. Say
∏

n=1
∞ (1+an) absolutely convergent, if and only if

∏

n=1
∞ (1+ |an|) converges.

Exercise 31. If
∏

n=1

∞
(1 + an) is absolutely convergent, it is convergent.

Exercise 32. If
∏

n=1

∞
(1+ an) is absolutely convergent, then any re-arrangement converges to the same value.

4.5. Some fun examples

Example 49. We know that the harmonic series
∑

n=1
∞ 1

n
diverges to∞. Now consider the sequence

obtained by dropping all terms involving 9:

1 +
1
2

+ ···+ 1
8

+
1
9

+
1
10

+ ···+ 1
18

+
1
19

+ ···+ 1
88

+
1
89

+
1
90

+
1
91

+
1
92

+ ··· (113)

Does this series converge?
As it is a non-negative sequence, we only need to check whether it’s bounded above. We have,

1 + ···+ 1
8

< 8, (114)

(

1
10

+ ···+ 1
18

)

+ ···+
(

1
80

+ ··· 1
88

)

< 8 · 9
10

(115)

In general, there are 8 · 9k terms between 10−k and
1

10k+1− 1
, so their sum is bounded above by

8 ·
(

9

10

)

k
. Overall the sum is bounded above by

∑

n=0

∞
8 ·
(

9
10

)n

= 8 · 1

1− 9

10

= 80. (116)
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Therefore the new series converges.

Remark 50. Obviously we can try to study the sequence resulted from deleting all terms involving
other digits, or sequence of numbers. For example we can delete all terms involving the combination

43, that is
1

4352
is deleted while

1

4537
is not. We can even play some silly games such as deleting all

terms involving 121221, or someone’s birthday. The resulting sequences are all convergent.

Example 51. (RIS Gem 87) For each positive integer n, let f(n) be the number of zeros in the
decimal representation of n. Choose a > 0 and consider the series

∑

n=1

∞
af(n)

n2
. (117)

This series converges for 0< a < 91 and diverges for a > 91.

Proof. Fix k ∈N. There are exactly
(

m

k

)

9m+1−k numbers with f(n) = k. Now we re-arrange the

series such that all numbers with the same number of digits and the same f(n) are summed first.
This is OK since the series is positive.

If we sum all numbers with m +1 digits, we have

∑

n=1

∞
af(n)

n2
>
∑

k=0

m
(

m

k

)

9m+1−k ak

102m+2
=

9
100

(

9 + a

100

)m

. (118)

Thus we prove the divergence for a> 91.
For the other half, we use

∑

n=1

∞
af(n)

n2
6
∑

k=0

m
(

m

k

)

9m+1−k ak

102m
= 9

(

9 + a

100

)m

(119)

and proceed similarly. �

Example 52. (Fermat’s Last Theorem) This is adapted from the blog of Terence Tao of
UCLA25. We all know that Fermat’s Last Theorem claims that

xn + yn = zn, x, y, z ∈N (120)

does not have any solution when n> 3. On the other hand, it is well-known that when n=2, there
are infinitely many solutions. But why? What’s the difference between n=2 and n>2? It turns out
that we can reveal some difference through knowledge of convergence/divergence of infinite series.

Let’s consider the chance of three numbers a, b, a+ b are all the nth power of a natural number.
If we treat a as a typical number of size a, then it’s chance of being an nth power is roughly a1/n/a.
Ignoring the relation between a, b, a+ b, we have the following probability for a, b, a+ b solving the
equation (120):

a
1

n
−1

b
1

n
−1

(a+ b)
1

n
−1

. (121)

Now consider all numbers a, b, we sum up the probabilities:

I :=
∑

a=1

∞
∑

b=1

∞
[

a
1

n
−1

b
1

n
−1

(a+ b)
1

n
−1
]

(122)

25. The probabilistic heuristic justification of the ABC conjecture, link at http://terrytao.wordpress.com/2012/09/18/the-

probabilistic-heuristic-justification-of-the-abc-conjecture/
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and apply the following intuition based on the so-called Borel-Cantelli Lemma in probability:

If I <∞, then the chance of (120) having a solution is very low, while if I =∞,
the chance is very high.

We notice that I has perfect symmetry between a and b, which means

I = 2
∑

a=1

∞
∑

b=1

a−1
[

a
1

n
−1

b
1

n
−1

(a + b)
1

n
−1
]

+
∑

a=1

∞
a

2

n
−2

(2 a)
1

n
−1

. (123)

It is clear that the second series converges for all n > 2 so can be ignored for our purpose.

Now consider

J =
∑

a=1

∞
∑

b=1

a−1
[

a
1

n
−1

b
1

n
−1

(a + b)
1

n
−1
]

. (124)

When 1 6 b 6 a− 1, we have a <a + b < 2 a therefore

∑

a=1

∞
∑

b=1

a−1

a
1

n
−1

b
1

n
−1

(2a)
1

n
−1

<J <
∑

a=1

∞
∑

b=1

a−1

a
1

n
−1

b
1

n
−1

(a)
1

n
−1

(125)

which gives

2
1

n
−1
∑

a=1

∞
∑

b=1

a−1

a
2

n
−2

b
1

n
−1

< J <
∑

a=1

∞
∑

b=1

a−1

a
2

n
−2

b
1

n
−1

. (126)

So finally all we need to study is the convergence/divergence of

K =
∑

a=1

∞
∑

b=1

a−1

a
2

n
−2

b
1

n
−1

=
∑

a=1

∞ [

a
2

n
−2
∑

b=1

a−1

b
1

n
−1

]

. (127)

We have

∑

b=1

a−1

b
1

n
−1∼

∫

1

a−1

x
1

n
−1

dx∼ a
1

n. (128)

Therefore

K ∼
∑

a=1

∞
a

3

n
−2

(129)

which is convergent when n> 4 while divergent when n= 2.

Remark 53. The case n = 3 is a bit tricky here. The series
∑

a=1
∞

a
3

n
−2

becomes the Harmonic
series

∑

a=1
∞

a−1 which is the borderline between convergence and divergence. Our argument does
not provide any insight on why x3 + y3 = z3 should not have solutions.

Exercise 33. (RIS, §6.1, Puzzle 3) Desert Dan is trying to cross a 500-mile desert in a jeep. Unfortunately, his

jeep could hold only enough fuel to travel 50 miles. However, Desert Dan has an infinite collection of containers

that he can use to leave caches of fuel for himself to use on a later trip. Further, on the entering edge of the desert

there is a boundless supply of fuel, so that Desert Dan can return to the entering edge of the desert as often as

he wishes. Can he cross the desert? (Hint: Footnote26.)

26. Design a strategy so that in n trips Desert Dan can travel 25
(

1+
1

2
+ ···+ 1

n

)

miles.
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5. More exercises and problems

Note. Many of the following problems are from (RIS) Chapters 4 and 5. Please note that I
chose those problems that are not particularly tricky and may help understanding concepts and
establishing intuitions. Please check out (RIS) if you would like to challenge your brain power.

5.1. Basic exercises

5.1.1. Convergence of infinite series: Definition and properties

Exercise 34. Find a divergent series
∑

n=1

∞
an such that for every fixed k ∈N, limn→∞ (an + ··· + an+k) = 0.

(Hint:27 )

Exercise 35. Let
∑

n=1

∞
an be an infinite series. Let

∑

n=1

∞
bn be the series obtained from an by deleting all the

zeroes. (For example 1+ 0 + 3 + 2 + 0 + 5 + ··· would be come 1 + 3+ 2 + 5 + ···. Prove that
∑

n=1

∞
an converges

if and only if
∑

n=1

∞
bn convergens, and when converge they have the same sum. (Hint: See this footnote.28)

Exercise 36. Let
∑

n=1

∞
an be an infinite series. Let (a1 + ···+ an1

) + (an1+1 + ···+ an2
) + ··· be any grouping of

the series. Prove that if this new series does not converge some finite number, then
∑

n=1

∞
an does not converge

either. (Hint:29 )

Exercise 37. (RIS) Prove
∑

k=0

∞
k2 + 3 k +1

(k + 2)!
= 2. (130)

(Hint:30 )

5.1.2. Comparison

Exercise 38. Assume
∑

n=1

∞
an
2 and

∑

n=1

∞
bn
2 converge. Prove that

∑

n=1

∞ (n + 1)2 an bn

n2
converges.

Exercise 39. Assume
∑

n=1

∞ |an| and
∑

n=1

∞ |bn| converge. Prove that
∑

n=1

∞ (n + 1)2 an bn

n2
converges. (Hint:31 )

Exercise 40. (Putnam 1940) Assume
∑

n=1

∞
an
2 and

∑

n=1

∞
bn
2 converge. Let p> 2. Prove that

∑

n=1

∞ |an− bn|p
converges. (Hint:32 )

Exercise 41. (RIS) If
∑

n=1

∞
an,

∑

n=1

∞
bn are non-negative and convergent, then

∑

n=1

∞
an
2 + bn

2
√

is also

convergent. Does the claim still hold if non-negativity is dropped from either an or bn? (Hint:33 )

Exercise 42. (RIS) Suppose
∑

n=1

∞
an convergens but

∑

n=1

∞
an
2 diverges. Prove that

∑ |an| diverges.

Exercise 43. (Ratio comparison test) Let
∑

n=1

∞
an,

∑

n=1

∞
bn be positive series. Assume there is N0 ∈ N

such that ∀n > N0,
an+1

an

6
bn+1

bn

. Then

i. If
∑

n=1

∞
bn converges, then

∑

n=1

∞
an converges;

ii. If
∑

n=1

∞
an diverges, then

∑

n=1

∞
bn diverges.

Exercise 44. Prove or disprove: If an > 0 and
∑

n=1

∞
an converges, then

∑

n=1

∞
tan (an) converges. (Hint:34 )

Exercise 45. Prove that
∑

n=1

∞ (

sin
1

n
− sin

1

n + 1

)

(131)

27. an = 1/n.

28. The partial sums of
∑

bn is a subsequence of that of
∑

an.

29. Cauchy criterion (Or definition, notice that the new partial sums form a subsequence of the partial sums of
∑

an).

30. k2 + 3 k + 1= (k + 2) (k + 1)− 1.

31. an, bn−→ 0 therefore an
2 6 |an|, bn

2 6 |bn| for large n.

32. If |an − bn|61 then |an − bn|p 6 |an − bn|2.
33. No. Consider an =

(−1)n

n
, bn = 0.

34. an−→ 0. Comparison.
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converges. (Hint:35 )

5.1.3. Tests

Exercise 46. (Putnam 1942) Is the following series convergent or divergent?

1 +
1

2
· 19

7
+

2!

32

(

19

7

)

2

+
3!

43

(

19

7

)

3

+
4!

54

(

19

7

)

4

+ ··· (132)

(Hint:36 )

5.1.4. Abel’s re-summation

Exercise 47. Prove that if
∑

n=1

∞
an converges then

∑

n=1

∞ an

n
converges. (Hint: 37.)

Exercise 48. Let λ be any positive number. Prove that if
∑

n=1

∞
an converges then

∑

n=1

∞
n e−λn an also

converges. (Hint:38 )

Exercise 49. Prove the following Dirichlet’s Test:

Consider
∑

n=1

∞
an bn. Assume that bn decreases to 0 and the partial sums of

∑

an are uniformly

bounded (in n). Then
∑

n=1

∞
an bn converges.

Exercise 50. Prove the following Abel’s Test:

Let
∑

n=1

∞
an be convergent and {bn} positive and decreasing (limn→∞bn may not be 0). Then

∑

n=1

∞
an bn converges.

5.2. More exercises

Exercise 51. Let
∑

n=1

∞
an be positive and decreasing. Then

∑

n=1

∞
an converges =⇒ limn→∞n an =0. Further

prove that “positive” and “decreasing” are both necessary. Also prove that the converse is false. (Hint:39)

Exercise 52. Let an > 0 and
∑

n=1

∞
an convergent. Set rn :=

∑

k=n

∞
ak. Prove that

∑

n=1

∞ an

rn

diverges. (Hint:40 )

Exercise 53. (RIS Gem 21, CMJ, 16:2, p, 79) The series

∑

n=1

∞ (

1
2

3
4

5
6
··· 2 n− 1

2 n

)p

(133)

converges if and only if p > 2. (Hint: See this footnote.41)

Exercise 54. (RIS)
∑

n=1

∞
(1/n1+1/n) diverges. (Hint: See footnote42.)

Exercise 55. (Putnam 1950) Study the convergence/divergence of the following series

1
log (2!)

+ ···+ 1
log (n!)

+ ···; 1
3

+
1

3 31/2
+

1

3 · 31/2 · 31/3
+ ··· (134)

(Hint: Footnote.43)

Exercise 56. (RIS) For any positive integers n and p, we have

∑

m=n

∞
1

m (m+ 1) ··· (m + p)
=

1

p n (n + 1) ···(n + p− 1)
. (135)

(Hint:44 )

35. MVT.

36. Ratio test.

37. Abel resummation.

38. n e−λn is decreasing for large n.

39.
∑

n>N
an >(m−N) am for every m > N .

40. Cauchy criterion.

41. Set bn =
(

2

3

4

5
··· 2 n − 2

2 n − 1

)p
. Prove that

an bn

2
< an

2 < an bn.

42. Compare with a divergent series.

43. First one: compare with
1

n log n
; Second one, 1+ ···+ 1/n∼ logn.
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Exercise 57. (RIS) Proce that

1+
1

2
− 1

3
+

1

4
+

1

5
− 1

6
+

1

7
+

1

8
− 1

9
+ ···=∞ (136)

but

1+
1

2
− 2

3
+

1

4
+

1

5
− 2

6
+

1

7
+

1

8
− 2

9
+ ···= log 3. (137)

(Hint:45 )

Exercise 58. Let
∑

n=1

∞
bn be a positive series. If

∑

n=1

∞
bn diverges, then so does

∑

n=1

∞ bn

1 + bn

. (Hint: Footnote.46)

Exercise 59. Prove that
∑

n=1

∞
(n1/n − 1) =∞. (Hint: Footnote.47)

Exercise 60. Let
∑

n=1

∞
an be conditionally convergent. Let bn =

{

an an > 0
0 an 6 0

and cn =

{

0 an > 0
−an an < 0

. Prove

that
∑

n=1

∞

bn =∞;
∑

n=1

∞

cn =∞. (138)

(Hint:48 )

Exercise 61. (Putnam 1956) Given T1=2, Tn+1 =Tn
2−Tn +1, n >0. Prove

∑

n=1

∞ 1

Tn

=1. (Hint: Footnote49.)

Exercise 62. (Putnam 1988) Prove that if
∑

n=1

∞
an is a convergent series of positive numbers, then so is

∑

n=1

∞
(an)n/(n+1)(Note that this gives another proof of the fact that there can be not “largest” convergent series)

(Hint: 50)

Exercise 63. (Folland) Let
∑

n=1

∞
an be a convergent series. Let

∑

n=1

∞
bn be such that

b1 = a2, b2 = a1, b3 = a4, b4 = a3, .... (139)

Then
∑

n=1

∞
bn also converges and has the same sum as

∑

n=1

∞
an.

Exercise 64. (Folland) Suppose an >−1 for all n.

a)
∑

n=1

∞
an is absolutely convergent if and only if

∑

n=1

∞
ln (1 + an) is absolutely convergent.

b) Find
∑

n=1

∞
an conditionally convergent but

∑

n=1

∞
ln (1 + an) diverges.

(Hint:51 )

Exercise 65. (Putnam 1994) Prove that if an satisfy 0<an <a2n +a2n+1 for all n> 1, then
∑

n=1

∞
an diverges.

(Hint: Footnote52.) Note that this almost gives another proof of divergence of
∑

n=1

∞ 1

n
.

Exercise 66. (Cauchy’s Condensation Test) Let
∑

n=1

∞
an be positive, and assume there is N0 ∈ N such

that ∀n > N0, an+1 6 an. Then
∑

n=1

∞

an and
∑

n=1

∞

2n a2n (140)

either both converge or both diverge. (Hint:53 )

Apply Cauchy’s Condensation Test to
∑

n=1

∞
(1/na).

44.
p

m (m + 1)···(m + p)
=

(m + p)−m

m (m + 1)···(m + p)
.

45. Group 3 terms together.

46. Discuss two cases bn bounded or not.

47. exp
[

log n

n

]

− exp0. MVT.

48. Assume otherwise. Then either one of
∑

bn,
∑

cn converges, or both converge. In the latter case
∑

an is absolutely

convergent, in the former case
∑

an cannot be convergent.

49.
1

Tn+1 − 1
=

1

Tn − 1
− 1

Tn

.

50. Prove an
n/(n+1)

62 an + 2−n.

51. For a), first notice an−→0. Then control the ratio between |an| and |ln(1+an)|; For b), pick an such that
∑

an
2 diverges.

52. Prove that if a1 =/ 0 then the sequence cannot be Cauchy.

53. We have

∑

2n

2n+1−1

ak 62n a2n 62
∑

2n−1

2n−1

ak. (141)
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Exercise 67. (Kummer) 54Let
∑

n=1

∞
an be a positive infinite series, and let {λn} be any sequence of positive

numbers. If there is N0∈N such that

∀n >N0, λn − an+1

an

λn+1 > k > 0 (142)

for some constant k, then
∑

n=1

∞
an converges. (Hint:55)

Exercise 68. (Kummer’s Test) Let
∑

n=1

∞
an be a positive infinite series, let

∑

n=1

∞ 1

dn

be positive and divergent,

define

κn := dn − an+1

an

dn+1. (143)

Then

• if there is N0∈N such that ∀n > N0, κn > k > 0 for some constant k, then
∑

n=0

∞
an converges.

• if there is N0∈N such that ∀n > N0, κn 6 0, then
∑

n=0

∞
an diverges.

Exercise 69. Write Kummer’s test in the limit form using limsup and liminf .

Exercise 70. (USTC3) Let
∏

n=1

∞
pn and

∏

n=1

∞
qn be convergent infinite products. Discuss the convergence

of the following infinite products:

∏

n=1

∞

(pn + qn),
∏

n=1

∞

(pn − qn),
∏

n=1

∞

pn qn,
∏

n=1

∞
pn

qn

. (144)

Exercise 71. (USTC3) Prove the following

∏

n=2

∞
n3− 1

n3 +1
=

2

3
;

∏

n=2

∞ [

1− 2

n (n + 1)

]

=
1

3
;

∏

n=0

∞ [

1+

(

1

2

)

2n]

= 2;
∏

n=1

∞

cos
x

2n
=

sin x

x
; (145)

2

2
√ · 2

2 + 2
√√ · 2

2+ 2 + 2
√√

√ ···= π

2
. (146)

Exercise 72. (USTC3) Discuss the convergence of the following infinite products.

∏

n=1

∞
1
n

;
∏

n=1

∞
(n + 1)2

n (n + 2)
;

∏

n=2

∞ (

n2− 1
n2 + 1

)p

;
∏

n=1

∞
n

n2 + 1
√ ;

∏

n=1

∞ (

1+
1
n

)

1/n

;
∏

n=1

∞
[

ln
n +x

n

]

1/n
. (147)

5.3. Problems

Problem 1.

a) (Putnam 1964) Prove that there is a constant K such that the following inequality holds for any sequence

of positive numbers a1, a2, ...:
∑

n=1

∞
n

a1 + ···+ an

6 K
∑

n=1

∞
1

an

. (148)

(Hint: 56.)

b) In the above exercise, consider an = nk. We can easily show that limn→∞

∑

k=1

n
an

1

k + 1
nk+1

=1. This would give

n

a1 + ···+ an

∼ k + 1

an

. (149)

Does this contradict the conclusion of the above exercise? (Hint:57 )

Problem 2. (Putnam 1966) Show that if the series
∑

n=1

∞ 1

pn

converges, where pn ∈R
+, then the series

∑

n=1

∞
n2

(p1 + ···+ pn)2
pn (150)

54. Eduard Kummer (1810 - 1893).

55.
1

k
(an λn − an+1 λn+1) >an

56. Basically, a1 + ···+ a2n−1 >n bn where bn is the median of a1, ..., a2n−1.

57. No. Because (149) only holds when n is large.
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is also convergent. (Hint: 58.)

Problem 3. Consider the re-arrangement of
∑

n=1

∞
an with an =

(−1)n+1

n
into p positive terms, then q negative

terms, then p positive terms, and so on. Then the sum is

ln 2+
1

2
(ln p− ln q). (151)

Problem 4. Prove that for xn > 0

liminf
n−→∞

xn+1

xn

6 liminf
n−→∞

(xn)1/n 6 limsup
n−→∞

(xn)1/n 6 limsup
n−→∞

xn+1

xn

. (152)

(Hint:59 )

Problem 5. (Schlomilch) 60Let an >0 and assume there is N0∈N such that ∀n>N0, an+16an. Let n1<n2< ···
be a strictly increasing sequence of positive integers such that (nk+1−nk)/(nk −nk−1) is bounded (as a function

of k). Then
∑

n=1

∞

an and
∑

k=1

∞

(nk+1−nk) ank
(153)

either both converge or both diverge.

Then apply this result to
∑

n=1

∞ 1

2 n
√ .

Problem 6. Define Hn :=
∑

k=1

n 1

k
. Write

γn := Hn − ln n− 1
n

. (154)

Then limn→∞γn exists. Then use this to prove
∑

n=1

∞ (−1)n+1

n
= ln 2.

Problem 7. Let an > 0. Is it possible to obtain a “Convergence Test” by studying

limsup
n→∞

a2n + a2n+1

an

and liminf
n→∞

a2n + a2n+1

an

? (155)

This is inspired by Exercise 65.

Problem 8. Discuss the convergence/divergence of

∑

n=1

∞
1

n1+an

(156)

where an > 0.

Problem 9. Let Hn = 1+
1

2
+ ···+ 1

n
. Let np :=min {n∈N, Hn > p}. Then

lim
p→∞

np+1

np

= e. (157)

(Solution: Gem 55 of (RIS) ).

Problem 10. Let
∑

n=1

∞
an be conditionally convergent. Let r ∈ R be arbitrary. Then there is a function f :

N 7→ {0, 1} such that
∑

n=1

∞
(−1)f(n)an = r.

Problem 11. Prove the following variant of Gauss’s Test:

Let
∑

n=1

∞
an be a positive infinite series. Assume that it satisfies

an

an+1
= 1+

1

n
+

β

n ln n
+ Rn (158)

where limn→∞ (n ln n) Rn =0. Then the series converges if β > 1 and diverges if β < 1. (Hint:61)

Problem 12. Prove Theorem 42:

58. Hn := p1+ ···+ pn. And use Hn
2 >Hn Hn−1. Derive an quadratic inequality for the partial sum throughCauchy-Schwarz.

59. xn =
xn

xn−1

· xn−1

xn−2

···x2

x1

x1.

60. Oscar Xavier Schl”omilch (1823 - 1901).

61. Try to prove

an

an+1
− n+ 1

n

(

ln (n + 1)
lnn

)α

> 0 (159)

for some α > 0 and n large enough.
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Let
∑

n=1

∞
an be a series whose terms go to 0. Then exactly one of the following holds:

• ∑

n=1

∞
an converges absolutely;

• All re-arrangements diverge to ∞;

• All re-arrangements diverge to −∞;

• The series can be re-arranged to sum to any r ∈R∩{∞,−∞}.
Problem 13. Assume

∑

n=1

∞
an
2 converges. Then

∏

n=1

∞

(1+ an) converges⇐⇒
∑

n=1

∞

an converges. (160)

Note that there is no assumption on the sign of an. (Hint: 62)

Problem 14. (Euler) In his 1734 paper De progressionibus harmonicis observationes (Observations on
harmonic progressions)63, Leonhard Euler did the following manipulations on harmonic-type series. Comment

on his methods and results. If the results are right while the methods are not, give correct proofs of the results.

a) Let a, b, c > 0. Let i =∞. Denote

s =
c

a
+

c

a+ b
+

c

a+ 2 b
+ ···+ c

a + i b
. (161)

Now we have
δs

δi
=

c

a + i b
. (162)

Integrate and take i =∞ we have

s = C +
c

b
ln (a + i b). (163)

Now replacing i by n i and using the fact that

a + i b

a+ n i b
=

a/i + b

a/i + n b
=

0 + b

0+ n b
=

1
n

(164)

we have

ln (n) =

(

1+
1

2
+ ···+ 1

n i

)

−
(

1 +
1

2
+ ···+ 1

i

)

. (165)

Now re-arrange. we have

ln (n) = 1+
1

2
+ ···+

(

1

n
− 1

)

+
1

n + 1
+ ···+

(

1

2 n
− 1

2

)

+ ··· (166)

In particular:

ln 2 = 1− 1

2
+

1

3
− 1

4
+ ···; (167)

ln 4 = 1+
1

2
+

1

3
− 3

4
+

1

5
+

1

6
+

1

7
− 3

8
+ ··· (168)

Now 2 ln2− ln 4= 0 gives

0= 1− 3
2

+
1
3

+
1
4

+
1
5
− 3

6
+ ···. (169)

b) Continuing, Euler obtained:

1 = ln

(

2
1

)

+
1
2
− 1

3
+ ··· (170)

1

2
= ln

(

3

2

)

+
1

2 · 4 − 1

3 · 8 + ··· (171)

1
3

= ln

(

4
3

)

+
1

2 · 9 − 1
3 · 27 + ··· (172)

···
Problem 15. There are more than one ways to assign a number s to an infinite sum a1+ a2 + ···. The above is
the most popular one. The following is another way.

62. Prove that
∑

n=1
∞

an
2 converges =⇒ ∑

n=1
∞ [an − ln (1+ an)] converges.

63. Comm. Acad. Sci. Imp. Petropol. 7 (1734/5) 1740, 150-161.
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Let a1, ..., an, ...∈R. Define

s=
∑

n=1

∞

an (173)

if and only if for every ε>0, there is a finite subset I ⊂N, such that for every finite subset N⊃J ⊇I ,

we have
∣

∣

∣

∣

∣

s−
∑

j∈J

aj

∣

∣

∣

∣

∣

< ε. (174)

a) Prove that if s =
∑

n=1

∞
an by this definition, then s=

∑

n=1

∞
an by Definition 7;

b) Find
∑

n=1

∞
an that is convergent by Definition 7 but not convergent by the above definition;

c) Prove that if s=
∑

n=1

∞
an by the above definition, then s is also the sum of any rearrangement of {an}.

d) Prove that if s=
∑

n=1

∞
an by Definition 7, and ∀n∈N, an > 0, then s is also the sum of any rearrangement

of {an}.
e) Find

∑

n=1

∞
an that is convergent by Definition 7, but after rearrangement converge to a different sum.

f) Prove that if s =
∑

n=1

∞
an by the above definition, then any re-grouping gives the same sum. More

specifically, if ∪i∈ISi =N and i =/ j =⇒Si∩Sj = ∅, then

∑

n=1

∞

an =
∑

i∈I

(

∑

k∈Si

ak

)

(175)

where all three sums are defined as in this problem.

g) Prove that
∑

n=1

∞
an is convergent by the above definition if and only if

∑

n=1

∞ |an| is convergent by

Definition 7

This new definition is closely related to the concept of “net”, which can assign limits to objects without a “sequence”

structure, for example the convergence of Riemann sums of a function to its Riemann integral is convergence in
the sense of net.

Remark. When we use the definition in the above problem, we often write
∑

n∈N
an instead of

∑

n=1

∞
an to

emphasize that order does not matter here.
∑

n∈N
an is called “unordered series”.

It is clear that the above definition for convergence of unordered series can be easily extended to the sum of

uncountably many numbers. However it turns out that for uncountably many numbers to have a finite sum, at
most countably many can be nonzero.
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