Math 317 Winter 2014 Homework 6 Solutions

Due Mar. 26 2P

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answers.

Question 1. In the following $a>0$ is a constant.
a) Calculate

$$
\begin{equation*}
\int_{L}|x y| \mathrm{d} s \tag{1}
\end{equation*}
$$

with $L:\binom{a \cos ^{3} t}{a \sin ^{3} t}, t \in[0,2 \pi]$.
b) Calculate

$$
\begin{equation*}
\int_{S}(x+y+z) \mathrm{d} S \tag{2}
\end{equation*}
$$

with S the first octant part of the unit sphere: $x^{2}+y^{2}+z^{2}=a^{2}, x, y, z \geqslant 0$.
Question 2. Let $a>0$ be a constant. Calculate

$$
\begin{equation*}
\int_{L} y \mathrm{~d} x-z \mathrm{~d} y+x \mathrm{~d} z \tag{3}
\end{equation*}
$$

where L is the intersection of $\left(x^{2}+y^{2}\right) / 2+z^{2}=a^{2}$ and $x=y$, oriented counter-clockwise when viewed from the positive x-axis.
a) directly;
b) via Stokes's Theorem.

Question 3. Calculate

$$
\int_{S}\left(\begin{array}{c}
x^{2} \tag{4}\\
-y^{2} \\
z^{2}
\end{array}\right) \cdot \mathbf{d} \boldsymbol{S}
$$

where $S=\partial V$ where $V=\left\{x^{2}+y^{2}+z^{2} \leqslant 3\right\} \cap\{z \geqslant 0\} \cap\left\{z \geqslant \sqrt{x^{2}+y^{2}-1}\right\}$, oriented by the outer normal,
a) directly;
b) via Gauss's Theorem.

Question 4. Let $D \subset \mathbb{R}^{2}$. Let $T(u, v)=\binom{X(u, v)}{Y(u, v)}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be a C^{1} bijection such that $\operatorname{det}\left(\frac{\partial(X, Y)}{\partial(u, v)}\right) \neq 0$ everywhere. Assume that $D, T^{-1}(D)$ both satisfy the hypothesis of Green's Theorem.

Prove

$$
\begin{equation*}
\mu(D)=\int_{T^{-1}(D)}\left|\operatorname{det}\left(\frac{\partial(X, Y)}{\partial(u, v)}\right)\right| \mathrm{d}(u, v) \tag{5}
\end{equation*}
$$

using Green's Theorem.
Question 5. Let S be a closed C^{1} surface given by $\Phi=0$ where $\Phi: \mathbb{R}^{3} \mapsto \mathbb{R}$ is C^{1} and satisfy $\operatorname{grad} \Phi \neq 0$ everywhere. Prove that the area of S is given by

$$
\begin{equation*}
-\int_{V} \operatorname{div}\left(\frac{\operatorname{grad} \Phi}{\|\operatorname{grad} \Phi\|}\right) \mathrm{d} \boldsymbol{x} \tag{6}
\end{equation*}
$$

where $V:=\{\Phi>0\}$ is the region enclosed by S.

Question 6. Let $V \subset \mathbb{R}^{3}$ and let ∂V be C^{1} oriented by outer normal \boldsymbol{n}. Let $u: \mathbb{R}^{3} \mapsto \mathbb{R}, f: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ be C^{1}. Prove that

$$
\begin{equation*}
\int_{\partial V} u \boldsymbol{n} \mathrm{~d} S=\int_{V}(\operatorname{grad} u) \mathrm{d} \boldsymbol{x} ; \quad \int_{\partial V} \boldsymbol{n} \times \boldsymbol{f} \mathrm{d} S=\int_{V}(\operatorname{curl} \boldsymbol{f}) \mathrm{d} \boldsymbol{x} \tag{7}
\end{equation*}
$$

Here if $a \in \mathbb{R}$ and $\boldsymbol{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3}\end{array}\right) \in \mathbb{R}^{3}$, $a \boldsymbol{b}$ is defined as $\left(\begin{array}{c}a b_{1} \\ a \\ a \\ a \\ a\end{array}\right)$.

