
Math 317 Winter 2014 Homework 5 Solutions
Due Mar. 12 2p

� This homework consists of 6 problems of 5 points each. The total is 30.

� You need to fully justify your answers.

Question 1. Let x2 (0; 1). Recall that it has decimal representation x=0:a1a2a3::::; an2f0; 1; 2;
3; 4; 5; 6; 7; 8; 9g means

x=
X
n=1

1
an
10n

: (1)

Prove that

� If x=/ m

10n for any m;n2N, then it has a unique decimal representation;

� If x= m

10n for some m;n2N, then it has exactly two decimal representations.

Solution.

� Assume x=/ m

10n for any m;n2N.
Then we determine a1; a2; :::: one by one as follows.

� Let a1=maxfij i2f0; 1; ::::; 9g; i < 10xg.
� Assume a1; :::; an have been chosen. Set en := x ¡ 0:a1::::an. Set an+1 = max fij

i2f0; 1; ::::; 9g; i < 10n+1 eng.

Now we prove that x=
P

n=1
1 an

10n , which is equivalent to limn!1en=0.
First we notice that

e1= 10¡1 [10x¡ a1]2 (0; 10¡1): (2)

Note that by assumption e1=/ 0.
Now assume en2 (0; 10¡n). Then we have

en+1= 10¡(n+1) [10n+1 en¡ an+1]2
¡
0; 10¡(n+1)

�
: (3)

Therefore by induction we have

8n2N; 0<en< 10¡n (4)

and the conclusion follows from Squeeze Theorem.
Now we prove that this is the unique representation. Assume there is another one

0:b1b2:::= x. Let n0=min fkj ak=/ bkg. Wlog ak>bk. Then we have

0:a1a2::::¡ 0:b1b2:::=
ak¡ bk
10k

+
X

n=k+1

1
an¡ bn
10n

: (5)

Thus we must have

1

10k
6 ak¡ bk

10k
=

X
n=k+1

1
bn¡ an
10n

6
X

n=k+1

1
9
10n

=
1

10k
: (6)

This implies X
n=k+1

1
bn¡ an
10n

=
X

n=k+1

1
9
10n

=)
X

n=k+1

1
9¡ (bn¡ an)

10n
=0: (7)

1



Since 9¡ (bn¡ an)> 0 for all n, the above series is non-negative. Therefore

06
X

n=k+1

m
9¡ (bn¡ an)

10n
6 0=) 9= bn¡ an=) bn=9; an=0 8n> k+1: (8)

But this implies

x=
a1::::ak
10k

; (9)

contradiction.

� Assume x= m

10n for some m;n2N.
The existence of two di�erent representations is obvious:

x=0:a1a2::::an000:::=� 0:a10a20 ::::an0 999:::: (10)

with m= a1 10n¡1+ ���+ a0=
P

k=0
n¡1 an¡k 10k and m¡ 1=

P
k=0
n¡1 an¡k

0 10k. Now we prove
that these are the only two.

Now we prove that any decimal 0:b1b2:::: = x is either 0:a1a2::::an000:::::: or than
0:a1

0a2
0 ::::an

0 999::::
For any such decimal there are only two cases:

i. m=
P

k=0
n¡1 an¡k 10k6

P
k=0
n¡1 bn¡k 10k.

We have

0=0:b1b2::::¡ 0:a1a2::: =
X
n=1

1

bn 10¡n¡
X
k=1

n

ak 10¡k

=

"X
k=1

n

bk 10¡k¡
X
k=1

n

ak 10¡k
#
+

X
k=n+1

1
bk 10¡k

= 10¡n [(b1 10n¡1+ :::+ bn)¡ (a1 10n¡1+ :::+ an)]

+
X

k=n+1

1
bk 10¡k: (11)

Note that the re-arrangement of the sums is allowed because both series are absolutely
convergent.

By assumption (b1 10n¡1 + ::: + bn) ¡ (a1 10n¡1 + ::: + an) > 0, by de�nition of
decimals bk > 0 for each k = n + 1; :::: and therefore

P
k=n+1
1 bk 10¡k > 0. Thus we

conclude

(b1 10n¡1+ :::+ bn)¡ (a1 10n¡1+ :::+ an)= 0=) ak= bk; k=1; 2; 3; ::: (12)

and X
k=n+1

1

bk 10¡k=0: (13)

Notice that

06 bn+1 10¡(n+1)6
X

k=n+1

1

bk 10¡k=0=) bn+1=0: (14)

Now by induction we can prove

bk=0; k=n+1; n+2; ::: (15)

ii. m¡ 1=
P

k=0
n¡1 an¡k

0 10k>P
k=0
n¡1 bn¡k10k.
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The proof for bk= ak
0 for k6 n and bk= 9 for all k > n is similar to the previous

case and is omitted.

Question 2. Prove the following through explicit construction of bijections.

a) R¡Q�R; You can assume that Q has already been listed as fr1; r2; ::::g.
b) R¡A�R, where A is the set of all algebraic numbers. You can assume that A has already

been listed as fa1; a2; a3; ::::g.

Solution.

a) Since Q is countable, we list Q=fr1; r2; ::::g. Now let A :=Q+ 2
p

=
�
r1+ 2

p
; r2+ 2

p
; ::::

	
.

As 2
p

is irrational, we have Q\A=?. Now de�ne

f :R 7!R¡Q f(x)=

8><>:
x x2/ A[Q

r2k+ 2
p

x= rk+ 2
p
2A

r2k¡1+ 2
p

x= rk2Q

: (16)

It is clear that this is a bijection.

b) The construction is almost identical as soon as we �nd B�R such that B\A=? andB�A.
To do this we consider the set

B :=�N= f�; 2�; 3�; ::::g (17)

where � 2R¡A. Note that since R is not countable, we know such � exists (for example
�=� or e).

It is clear that B�A. All we need to show is B \A=?, that is n � is not algebraic for
any n2N. Assume the contrary. Then there are n2N and a0; :::; am2Z with a0; ::::; am not
all 0, such that

am (n�)
m+ ���+ a1 (n�)+ a0=0: (18)

This gives

(amn
m)�m+(am¡1n

m¡1)�m¡1+ ���+(a1n)�+ a0=0: (19)

Since � is not algebraic, we conclude

amn
m= am¡1n

m¡1= ���= a1n= a0=0=) am= am¡1= ���= a1= a0=0: (20)

Contradiction.

Question 3. Recall that if (X;6) is a partially ordered set, then x02Y �X is said to be

� a least element of Y if and only if for every y 2Y, x06 y.

� a minimal element of Y if and only if there is no y 2Y such that y <x0.

a) Let (X;6) be a partially ordered set. Assume that every non-empty subset of X has a least
element. Prove that 6 is in fact a well-ordering.

b) Does the conclusion in a) still hold if we instead assume that every non-empty subset has a
minimal element?

c) Does the conclusion in a) still hold if we instead assume that every non-empty subset has a
unique minimal element?

d) Find a partially ordered set (X;6) such that it has a unique minimal element but no least
element.
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Solution.

a) All we need to show is that (X;6) is linearly ordered, that is any x; y 2X, at least one of
x6 y; y6x; x= y holds.

Take any x; y2X such that x=/ y. Consider the non-empty subset fx; yg�X. We know
that it has a least element, which must be either x or y. If x is the least element, then by
de�nition of least element we have x < y. On the other hand if y is the least element, we
have y <x.

b) No. For example consider N[fag where a is not comparable to any other element.

c) Yes. First in this case the order must be linear, since otherwise we have a; b 2 X not
comparable, then fa; bg � X has two minimal elements. Now we show that in a linearly
ordered set, any minimal element must also be a least element. Assume otherwise, then there
is y 2 Y such that x06 y does not hold. Since the order is linear, it must hold that y < x0,
contradicting the minimality of x0.

d) Let X = fa; bg [ Z be ordered by a < b and the natural ordering on Z. Then a is the only
minimal element but there is no least element.

Question 4. We de�ne an ordered pair (a; b) as ffag; fa; bgg.

a) Prove that (a; b) = (c; d) () a = c; b = d. (Note: the case a = b needs to be discussed
separately).

b) Review lecture note for Weeks 5 & 6 and the 217 lecture note on �Numbers�. Explain why
any positive real number x can be identi�ed as a

set of sets of sets of sets of �nite ordinals.

Solution.

a) (= is trivial. We prove =).

� First consider the case a= b. In this case

ffcg; fc; dgg=(c; d)= (a; b)= ffag; fa; bgg= ffag; fagg= ffagg: (21)

Therefore

fcg= fc; dg= fag=) c= d= a: (22)

� Now consider the case a=/ b. In this case we have

ffcg; fc; dgg= ffag; fa; bgg: (23)

Thus either

fcg= fag; fc; dg= fa; bg (24)

or

fcg= fa; bg; fag= fc; dg: (25)

The latter implies c= a= b, contradicting the assumption a=/ b. The former implies
a= c, b= d, as desired.

b) We have

� According to a), each ordered pair of natural numbers (m;n) is a

set of sets of �nite ordinals;
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� positive rational numbers are de�ned as equivalent class of ordered pairs of natural
numbers, therefore any r 2Q+ is a set of ordered pairs, and there for is a

set of sets of sets of �nite ordinals;

� positive real numbers are de�ned through Dedekind's �cuts�, that is as subsets of Q+,
therefore any x2R+ is a

set of sets of sets of sets of �nite ordinals.

Question 5.

a) Re-order N to obtain the following ordinal numbers:

!+7; ! � 2; ! �!+1 (26)

You don't need to justify your answers.

b) Find ordinal numbers �; �; 
, calculate (� + �) � 
 and � � 
 + � � 
 to show (� + �) � 
 =/
� � 
+ � � 
. You don't need to justify your calculations.

Solution.

a) We have

� !+7:

8< 9< 10< ���< 1< 2< 3< 4< 5< 6< 7: (27)

� ! � 2:
1< 3< 5< ���< 2< 4< 6< ��� (28)

� ! �!+1:

all prime numbers<numbers with two prime factors<���< 1: (29)

b) Take �= �=1, 
=!. Then

(�+ �) � 
=2 �!=!=/ !+!=1 �!+1 �!: (30)

Question 6. Let A1 := fE �RjE is openg; A2 := fE �RjE is closed g; A3 := fE�RjE is Jordan
measurableg; A4 := fE�R2jE is Jordan measurableg; A5 := ff :R2 7!Rj f is Riemann integrableg.
Find the cardinalities of A1¡A5. (Hint:1)

Solution.

a) Since f(0; r)j r 2Rg�A1, we have A1&R. On the other hand, any open set E is the union
of all the rational open intervals contained in it:

E=[a;b2Q;(a;b)�E(a; b): (31)

Therefore we can construct a one-to-one mapping from A1 to P(Q�Q) as follows2:

E 2A1 7! f(a; b)2Q�Qj (a; b)�Eg: (32)

Therefore we have A1.P(Q�Q)�P(N)�R. Therefore by Schröder-Bernstein we have
A1�R. The cardinality is therefore c.

1. Cantor set has the same cardinality as R.

2. Note that the �rst (a; b) is an ordered pair while the second (a; b) is an open interval.

Due Mar. 12 2p 5



b) Since f[r; r]jr2Rg�A2 we have A2&R. On the other hand, any closed set E can be written
as

E=[k2ZEk (33)

with each Ek := E \ [k; k + 1]. Therefore if we set A20 := fE � [0; 1]j E is closedg, then
A. (A20 )Z.

Now notice that the following mapping from A2
0 to A1 is one-to-one:

E 7!R¡E: (34)

Therefore we have A20 .R. This gives A.RZ�R.
Finally by Schröder-Bernstein we have A2�R. The cardinality is therefore c.

Remark. We see that most sets in R are neither open nor closed.

c) It is clear that A3.P(R). On the other hand, since the Cantor set C has Jordan measure 0
and C�R, any subset of C is Jordan measurable (with measure 0). Therefore A3&P(C)�
P(R). By Schröder-Bernstein we have A3�P(R). The cardinality is therefore 2c.

d) It is clear that A4. P(R2)�P(R). On the other hand, the segment [0; 1]� f0g is Jordan
measurable with measure 0. Thus A4&P([0;1]�f0g)�P(R). Consequently the cardinality
is again 2c.

e) First consider all the characteristic functions for Jordan measurable sets

�E(x; y) :=

�
1 (x; y)2E
0 (x; y)2/ E : (35)

This means A5&A4�P(R). On the other hand,

A5. fAll functions R2 7!Rg.P(R2�R)�P(R): (36)

Consequently the cardinality is still 2c.

Question 7. (Extra 1 pt) Study the wiki page http://en.wikipedia.org/wiki/JPEG about the JPEG
format. Explain why discrete cosine (instead of discrete sine, or classical Fourier expansion/trans-
form) are used in encoding every 8� 8 block.

Solution. Each 8� 8 block can be viewed as

a) one period of a (doubly) periodic function; This corresponds to Fourier expansion which leads
to Discrete Fourier transform;

b) one half (in each direction) period of a doubly periodic and odd function; This corresponds
to Fourier Sine expansion which leads to Discrete Sine transform;

c) one half (in each direction) period of a double periodic and even function; This corresponds
to Fourier cosine expansion which leads to Discrete Cosine transform.

From the convergence theory of Fourier series, we know that if this function is not continuous,
Gibbs's phenomenon will appear. The only continuous function in the above three cases is c). This
is why Discrete Cosine Transform is used.
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