Math 317 Winter 2014 Homework 4

Due Feb. 26 2P

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answers.

Question 1. Calculate the Fourier expansion of the function $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$ on $[-\pi, \pi]$. Then use the expansion to prove

$$
\begin{equation*}
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \tag{1}
\end{equation*}
$$

Question 2. Let $f(x)$ be an even function, that is $\forall x \in \mathbb{R}, f(x)=f(-x)$. Prove that its Fourier expansion on $[-L, L]$ is given by

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}, \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x \tag{2}
\end{equation*}
$$

Question 3. Let $f(x)$ be odd and $f(x)=1-\cos 2 x$ for $x>0$. Expand $f(x)$ to its Fourier series on $[-\pi, \pi]$.
Question 4. Let $f(x)$ be integrable on $[-\pi, \pi]$. Assume that its Fourier expansion on $[-\pi, \pi]$ is

$$
\begin{equation*}
\frac{0}{2}+\sum_{n=1}^{\infty}[0 \cdot \cos (n x)+0 \cdot \sin (n x)] \tag{3}
\end{equation*}
$$

Let $x_{0} \in(-\pi, \pi)$. Prove that, if $f(x)$ is continuous at x_{0}, then $f\left(x_{0}\right)=0$. (Hint: Consider for large k

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x)[p(x)]^{k} \mathrm{~d} x \tag{4}
\end{equation*}
$$

with $p(x)=\varepsilon+\cos x$ for appropriate $\varepsilon>0$.)
Question 5. A sequence $\left\{K_{n}\right\}$ are called "good kernels" if and only if the following hold:

- All the K_{n} 's are even;
- For any $n \in \mathbb{N}, \int_{-\pi}^{\pi} K_{n}(x) \mathrm{d} x=1$;
- There is $M>0$ such that for every $n \in \mathbb{N}, \int_{-\pi}^{\pi}\left|K_{n}(x)\right| \mathrm{d} x \leqslant M$;
- For any $\delta>0, \lim _{n \rightarrow \infty} \int_{|x|>\delta}\left|K_{n}(x)\right| \mathrm{d} x=0$.

Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be continuous and with period 2π.
a) Prove that $f_{n}(x):=\int_{-\pi}^{\pi} K_{n}(x-t) f(t) \mathrm{d} t$ converges to $f(x)$ uniformly.
b) (Extra 1 pt) Prove that the Dirichlet kernel is not "good".

Question 6. A set $S \subseteq \mathbb{R}^{N}$ is called "perfect" if and only if $S=S^{\prime}:=\left\{x \in \mathbb{R}^{N} \mid \exists x_{n} \in S, x_{n} \neq x\right.$, $\left.\lim _{n \rightarrow \infty} x_{n}=x\right\}$. Prove that perfect sets are uncountable.

Question 7. (Extra 3 pts) Consider two power series at $x=0$. Let $E:=\left\{x \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n} x^{n}=\right.$ $\left.\sum_{n=0}^{\infty} b_{n} x^{n}<\infty\right\}$. Find the weakest condition on E to guarantee $a_{n}=b_{n}$ for all n. Justify your answer using material from 117-317 only.
Question 8. (Extra 2 pts) Prove that Peano's curve is continuous and onto from $[0,1]$ to $[0,1]^{2}$.

