Math 317 Winter 2014 Homework 4 Solutions

Due Feb. 26 2p

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answers.

Question 1. Calculate the Fourier expansion of the function $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$ on $[-\pi, \pi]$. Then use the expansion to prove

$$
\begin{equation*}
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \tag{1}
\end{equation*}
$$

Solution. We have

$$
\begin{align*}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x=\frac{1}{\pi}\left[\int_{0}^{\pi} \cos (n x) \mathrm{d} x-\int_{-\pi}^{0} \cos (n x) \mathrm{d} x\right]=0 ; \tag{2}\\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x \\
& =\frac{1}{\pi}\left[\int_{0}^{\pi} \sin (n x) \mathrm{d} x-\int_{-\pi}^{0} \sin (n x) \mathrm{d} x\right] \\
& =\frac{2}{n \pi}[1-\cos (n \pi)] \\
& =\frac{2\left[1-(-1)^{n}\right]}{n \pi} \text {. } \tag{3}
\end{align*}
$$

Thus we have

$$
\begin{equation*}
f(x) \sim \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\sin (2 m-1) x}{2 m-1} \tag{4}
\end{equation*}
$$

Now notice that $f(x)$ satisfies the Holder condition on $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$, therefore

$$
\begin{equation*}
1=f\left(\frac{\pi}{2}\right)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \tag{5}
\end{equation*}
$$

The conclusion then follows.

Question 2. Let $f(x)$ be an even function, that is $\forall x \in \mathbb{R}, f(x)=f(-x)$. Prove that its Fourier expansion on $[-L, L]$ is given by

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}, \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x \tag{6}
\end{equation*}
$$

Solution. We have

$$
\begin{align*}
a_{n} & =\frac{1}{L}\left[\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x+\int_{-L}^{0} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x\right] \\
& =\frac{1}{L}\left[\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x-\int_{-L}^{0} f(-x) \cos \frac{n \pi(-x)}{L} \mathrm{~d}(-x)\right] \\
& =\frac{1}{L}\left[\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x+\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x\right] \\
& =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} \mathrm{~d} x . \tag{7}
\end{align*}
$$

Similarly we prove $b_{n}=0$.
Question 3. Let $f(x)$ be odd and $f(x)=1-\cos 2 x$ for $x>0$. Expand $f(x)$ to its Fourier series on $[-\pi, \pi]$.

Solution. As $f(x)$ is odd, similar to the previous problem we have $a_{n}=0$. Now we calculate b_{n}. We compute for $n=1,2,3, \ldots$

$$
\begin{align*}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi}(1-\cos 2 x) \sin (n x) \mathrm{d} x \\
& =\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) \mathrm{d} x-\frac{2}{\pi} \int_{0}^{\pi} \sin (n x) \cos (2 x) \mathrm{d} x \\
& =-\left.\frac{2}{n \pi} \cos (n x)\right|_{0} ^{\pi}-\frac{1}{\pi} \int_{0}^{\pi}[\sin (n+2) x+\sin (n-2) x] \mathrm{d} x \\
& =\frac{2}{n \pi}\left[1-(-1)^{n}\right]-\frac{1}{\pi} \int_{0}^{\pi} \sin (n+2) x \mathrm{~d} x-\frac{1}{\pi} \int_{0}^{\pi} \sin (n-2) x \mathrm{~d} x \tag{8}
\end{align*}
$$

We evaluate

$$
\begin{equation*}
\int_{0}^{\pi} \sin (n+2) x \mathrm{~d} x=-\left.\frac{1}{n+2} \cos (n+2) x\right|_{0} ^{\pi}=\frac{1-(-1)^{n+2}}{n+2} \tag{9}
\end{equation*}
$$

For the last term, there are two cases.

- If $n=2$, then $\sin (n-2) x=0$ and

$$
\begin{equation*}
\int_{0}^{\pi} \sin (n-2) x \mathrm{~d} x=0 \tag{10}
\end{equation*}
$$

- If $n \neq 2$, we compute

$$
\begin{equation*}
\int_{0}^{\pi} \sin (n-2) x \mathrm{~d} x=-\left.\frac{1}{n-2} \cos (n-2) x\right|_{0} ^{\pi}=\frac{1-(-1)^{n-2}}{n-2} \tag{11}
\end{equation*}
$$

Putting everything together, we have

$$
b_{n}= \begin{cases}\left(\frac{2}{n}-\frac{1}{n+2}\right) \frac{1-(-1)^{n}}{\pi}=0 & n=2 \tag{12}\\ \left(\frac{2}{n}-\frac{1}{n-2}-\frac{1}{n+2}\right) \frac{1-(-1)^{n}}{\pi} & n \neq 2\end{cases}
$$

Question 4. Let $f(x)$ be integrable on $[-\pi, \pi]$. Assume that its Fourier expansion on $[-\pi, \pi]$ is

$$
\begin{equation*}
\frac{0}{2}+\sum_{n=1}^{\infty}[0 \cdot \cos (n x)+0 \cdot \sin (n x)] \tag{13}
\end{equation*}
$$

Let $x_{0} \in(-\pi, \pi)$. Prove that, if $f(x)$ is continuous at x_{0}, then $f\left(x_{0}\right)=0$. (Hint: Consider for large k

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x)[p(x)]^{k} \mathrm{~d} x \tag{14}
\end{equation*}
$$

with $p(x)=\varepsilon+\cos x$ for appropriate $\varepsilon>0$.)
Solution. Assume $f\left(x_{0}\right) \neq 0$. Wlog we consider $x_{0}=0$ and $m:=f(0)>0$. (When $x_{0} \neq 0$ we can either define $F(x):=f\left(x+x_{0}\right)$ or use $\left.p(x)=\varepsilon+\cos \left(x-x_{0}\right)\right)$

Since f is continuous at 0 , there is $\delta_{1}>0$ such that $f(x) \geqslant \frac{m}{2}$ for all $|x| \leqslant \delta_{1}$, and $\delta_{2}>\delta_{1}$ such that $f(x) \geqslant 0$ for all $|x| \leqslant \delta_{2}$. Now take $\varepsilon>0$ such that there is $\varepsilon_{0}>0$ such that $p(x):=\varepsilon+\cos x$ satisfies

$$
p(x) \begin{cases}\geqslant 1+\varepsilon_{0} & |x| \leqslant \delta_{1} \tag{15}\\ \leqslant 1-\varepsilon_{0} & |x| \geqslant \delta_{2} \\ >0 & |x| \in\left(\delta_{1}, \delta_{2}\right)\end{cases}
$$

Now that for such p we have in fact,

$$
\begin{equation*}
|p(x)| \leqslant 1-\varepsilon_{0}, \quad|x| \geqslant \delta_{2} \tag{16}
\end{equation*}
$$

Now since the Fourier expansion of $f(x)$ is 0 ,
for all $k \in \mathbb{N}$.

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x)[p(x)]^{k} \mathrm{~d} x=0 \tag{17}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\int_{-\pi}^{\pi} f(x)[p(x)]^{k} \mathrm{~d} x= & \int_{-\delta_{1}}^{\delta_{1}} f(x)[p(x)]^{k} \mathrm{~d} x \\
& +\int_{\delta_{1}<|x|<\delta_{2}} f(x)[p(x)]^{k} \mathrm{~d} x \\
& +\int_{|x| \geqslant \delta_{2}} f(x)[p(x)]^{k} \mathrm{~d} x \\
=: & A+B+C \tag{18}
\end{align*}
$$

Now by our choices of δ_{1}, δ_{2}, we have

$$
\begin{equation*}
A \geqslant 2 \delta_{1} \frac{m}{2}\left(1+\varepsilon_{0}\right)^{k}, \quad B \geqslant 0, \quad|C| \leqslant 2 \pi M\left(1-\varepsilon_{0}\right)^{k} \tag{19}
\end{equation*}
$$

where $M:=\sup _{[-\pi, \pi]}|f(x)|$ is finite due to the integrability of f. Thus

Taking

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x)[p(x)]^{k} \mathrm{~d} x \geqslant \delta_{1} m\left(1+\varepsilon_{0}\right)^{k}-2 \pi M\left(1-\varepsilon_{0}\right)^{k} \tag{20}
\end{equation*}
$$

we have for this k,

$$
\begin{equation*}
k>\log _{\left[\left(1+\varepsilon_{0}\right) /\left(1-\varepsilon_{0}\right)\right]}\left(\frac{2 \pi M}{\delta_{1} m}\right) \tag{21}
\end{equation*}
$$

thus contradicting (17).

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x)[p(x)]^{k} \mathrm{~d} x>0 \tag{22}
\end{equation*}
$$

Remark. A slightly different (maybe a bit more transparent) proof is as follows.
Since $f(x)$ is continuous at 0 , there is $\delta>0$ such that $f(x)>0$ for all $|x|<\delta$. Now take $\varepsilon=1-\cos \delta$. Furthermore take $\delta_{1}<\delta$ such that

$$
\begin{equation*}
\cos \delta_{1}=\frac{1+\cos \delta}{2} \tag{23}
\end{equation*}
$$

Now consider $\int_{|x|<\delta_{1}}, \int_{\delta_{1} \leqslant|x|<\delta}, \int_{|x| \geqslant \delta}$.
Question 5. A sequence $\left\{K_{n}\right\}$ are called "good kernels" if and only if the following hold:

- All the K_{n} 's are even;
- For any $n \in \mathbb{N}, \int_{-\pi}^{\pi} K_{n}(x) \mathrm{d} x=1$;
- There is $M>0$ such that for every $n \in \mathbb{N}, \int_{-\pi}^{\pi}\left|K_{n}(x)\right| \mathrm{d} x \leqslant M$;
- For any $\delta>0, \lim _{n \rightarrow \infty} \int_{|x|>\delta}\left|K_{n}(x)\right| \mathrm{d} x=0$.

Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be continuous and with period 2π.
a) Prove that $f_{n}(x):=\int_{-\pi}^{\pi} K_{n}(x-t) f(t) \mathrm{d} t$ converges to $f(x)$ uniformly.
b) (Extra 1 pt) Prove that the Dirichlet kernel is not "good".

Solution.

a) Let $\varepsilon>0$ be arbitrary. As $f(x)$ is continuous on $[-2 \pi, 2 \pi]$ there is $\delta>0$ such that

$$
\begin{equation*}
\forall x, y \in[-2 \pi, 2 \pi], \quad|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\varepsilon}{2 M} . \tag{24}
\end{equation*}
$$

Now since $f(x)$ is periodic with period 2π, for any $x, y \in \mathbb{R}$, there are $x^{\prime}, y^{\prime} \in[-2 \pi, 2 \pi]$ such that

$$
\begin{equation*}
f\left(x^{\prime}\right)=f(x), f\left(y^{\prime}\right)=f(y), \quad\left|x^{\prime}-y^{\prime}\right| \leqslant|x-y| . \tag{25}
\end{equation*}
$$

Thus for the above δ we have

$$
\begin{equation*}
\forall x, y \in \mathbb{R}, \quad|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\varepsilon}{2 M} \tag{26}
\end{equation*}
$$

As $f(x)$ is continuous and periodic, it is bounded. That is there is $M_{1}>0$ such that

$$
\begin{equation*}
\forall x \in \mathbb{R}, \quad|f(x)|<M_{1} . \tag{27}
\end{equation*}
$$

Next for the δ chosen above, since $\lim _{n \rightarrow \infty} \int_{|x|>\delta}\left|K_{n}(x)\right| \mathrm{d} x=0$ there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n>N, \quad \int_{|x|>\delta}\left|K_{n}(x)\right| \mathrm{d} x<\frac{\varepsilon}{4 M_{1}} . \tag{28}
\end{equation*}
$$

Now for any such n and any $x \in[-\pi, \pi]$, we have

$$
\begin{align*}
\left|f_{n}(x)-f(x)\right| & =\left|\int_{-\pi}^{\pi} K_{n}(x-t) f(t) \mathrm{d} t-\int_{-\pi}^{\pi} K_{n}(x-t) f(x) \mathrm{d} t\right| \\
& =\left|\int_{-\pi}^{\pi} K_{n}(x-t)[f(t)-f(x)] \mathrm{d} t\right| \\
& =\left|\int_{-\pi}^{\pi} K_{n}(u)[f(x-u)-f(x)] \mathrm{d} u\right| \\
& \leqslant \int_{-\pi}^{\pi}\left|K_{n}(u)\right||f(x-u)-f(x)| \mathrm{d} u \\
& =\int_{-\delta}^{\delta}\left|K_{n}(u)\right||f(x-u)-f(x)| \mathrm{d} u+\int_{|x|>\delta}\left|K_{n}(u)\right||f(x-u)-f(x)| \mathrm{d} u \\
& \leqslant \frac{\varepsilon}{2 M} \int_{-\pi}^{\pi}\left|K_{n}(u)\right| \mathrm{d} u+2 M_{1} \int_{|x|>\delta}\left|K_{n}(u)\right| \mathrm{d} u \\
& <\frac{\varepsilon}{2 M} \cdot M+2 M_{1} \cdot \frac{\varepsilon}{4 M_{1}} \\
& =\varepsilon . \tag{29}
\end{align*}
$$

Thus ends the proof.
b) We check the conditions one by one.

- D_{N} is even;
- As $D_{N}(x)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{N} \cos (n x)$ it is clear that $\int_{-\pi}^{\pi} D_{N}(x) \mathrm{d} x=1$;
- We have

$$
\begin{equation*}
D_{N}(x)=\frac{\sin \frac{2 N+1}{2} x}{2 \pi \sin \frac{x}{2}} . \tag{30}
\end{equation*}
$$

Therefore we have

$$
\begin{align*}
\pi \int_{-\pi}^{\pi}\left|D_{N}(x)\right| \mathrm{d} x= & \int_{0}^{\pi} \frac{\left|\sin \frac{2 N+1}{2} x\right|}{\sin \frac{x}{2}} \mathrm{~d} x \\
> & \int_{0}^{2 \pi /(2 N+1)} \frac{\left|\sin \frac{2 N+1}{2} x\right|}{\sin \frac{x}{2}} \mathrm{~d} x+\int_{\frac{2 \pi}{2 N+1}}^{\frac{4 \pi}{2 N+1}} \frac{\left|\sin \frac{2 N+1}{2} x\right|}{\sin \frac{x}{2}} \mathrm{~d} x \\
& +\cdots+\int_{\frac{2(N-1) \pi}{2 N+1}}^{\frac{2 N \pi}{2 N+1}} \frac{\left|\sin \frac{2 N+1}{2} x\right|}{\sin \frac{x}{2}} \mathrm{~d} x \\
> & \int_{0}^{\frac{2 \pi}{2 N+1}} \frac{\left|\sin \frac{2 N+1}{2} x\right|}{\frac{\pi}{2 N+1}} \mathrm{~d} x+\cdots+\int_{\frac{2(N-1) \pi}{2 N+1}}^{\frac{2 N \pi}{2 N+1}} \frac{\left|\sin \frac{2 N+1}{2} x\right|}{\frac{N \pi}{2 N+1}} \mathrm{~d} x \\
= & \frac{2 N+1}{\pi}\left(1+\frac{1}{2}+\cdots+\frac{1}{N}\right) \int_{0}^{\frac{2 \pi}{2 N+1}}\left|\sin \frac{2 N+1}{2} x\right| \mathrm{d} x \\
= & \frac{2}{\pi}\left(1+\frac{1}{2}+\cdots+\frac{1}{N}\right) \int_{0}^{\pi}|\sin x| \mathrm{d} x \\
= & \frac{4}{\pi}\left(1+\frac{1}{2}+\cdots+\frac{1}{N}\right) . \tag{31}
\end{align*}
$$

In the above we have used the fact that $\left|\sin \frac{2 N+1}{2} x\right|$ is periodic with period $\frac{2 \pi}{2 N+1}$. Now it's clear that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi}\left|D_{N}(x)\right| \mathrm{d} x=\infty \tag{32}
\end{equation*}
$$

- Similarly, we can prove that for any $\delta>0, \lim _{n \rightarrow \infty} \int_{|x|>\delta}\left|D_{N}(x)\right| \mathrm{d} x=\infty$.

Question 6. A set $S \subseteq \mathbb{R}^{N}$ is called "perfect" if and only if $S=S^{\prime}:=\left\{x \in \mathbb{R}^{N} \mid \exists x_{n} \in S, x_{n} \neq x\right.$, $\left.\lim _{n \rightarrow \infty} x_{n}=x\right\}$. Prove that perfect sets are uncountable.

Solution. Assume $S=\left\{x_{1}, x_{2}, \ldots\right\}$ is countable. Since S is perfect, there is a compact interval I_{0} such that $x_{1} \in I_{0}^{o}$, and $I_{0}^{o} \cap S$ is infinite.

Now take $I_{1} \subset I_{0}^{o}$ such that

- $\quad I_{1}^{o} \cap S \neq \varnothing$;
- $\quad x_{1} \notin I_{1} ;$
- $\operatorname{diam}\left(I_{1}\right)<\frac{\operatorname{diam}\left(I_{0}\right)}{2}$.

As S is perfect, $S \cap I_{1}^{o}$ is infinite. Now repeat the above process, we obtain a sequence of nested intervals $I_{n+1} \subset I_{n}^{o}$ such that

$$
\begin{equation*}
\forall n, \quad x_{n} \notin I_{n} \Longrightarrow x_{n} \notin I_{m} \text { whenever } m \geqslant n, \quad I_{n}^{o} \cap S \neq \varnothing, \quad \operatorname{diam}\left(I_{n+1}\right)<\frac{\operatorname{diam}\left(I_{n}\right)}{2} . \tag{33}
\end{equation*}
$$

By the nested interval theorem there is a unique point $x \in \mathbb{R}^{N}$ such that

$$
\begin{equation*}
x=\cap_{n=1}^{\infty} I_{n} \tag{34}
\end{equation*}
$$

Since $x_{n} \notin I_{m}$ whenever $m \geqslant n$, we see that $\forall n \in \mathbb{N}, x_{n} \notin \cap_{n=1}^{\infty} I_{n}$ which means $x \notin S$. However by construction of I_{n} we have $I_{n}^{o} \cap S \neq \varnothing$ for all n which means $x \in S^{\prime}=S$. Contradiction.

Question 7. (Extra 3 pts) Consider two power series at $x=0$. Let $E:=\left\{x \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n} x^{n}=\right.$ $\left.\sum_{n=0}^{\infty} b_{n} x^{n}<\infty\right\}$. Find the weakest condition on E to guarantee $a_{n}=b_{n}$ for all n. Justify your answer using material from 117-317 only.

Solution. The weakest condition on E is E has a limit point in $(-R, R)$, where $R:=\sup _{x \in E}|x|$. Note that as E has a limit point, it must contain infinitely many points and consequently $R>0$.

- We see that both series have radius of convergence at least R. This means, if we set

$$
\begin{equation*}
A(x):=\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=0}^{\infty} b_{n} x^{n}, \tag{35}
\end{equation*}
$$

then $A(x)$ is defined on $(-R, R)$, satisfying $A(x)=0$ on E.

- Now by properties of power series, if $R>0$, we have, for $x \in(-R, R)$,

$$
\begin{equation*}
A(x)=\sum_{n=0}^{\infty}\left(a_{n}-b_{n}\right) x^{n} \tag{36}
\end{equation*}
$$

and furthermore

$$
\begin{equation*}
a_{n}-b_{n}=\frac{A^{(n)}(0)}{n!} \tag{37}
\end{equation*}
$$

Therefore all we need is to find the smallest E guaranteeing $A^{(n)}(0)=0$ for all $n \in \mathbb{N}$.

- Necessity. Assume otherwise, then either E is finite or the only limit point(s) of E is R (or $-R$, or both - as by Bolzano-Weierstrass E must have at least one limit point).

In the former case, assume $E=\left\{x_{1}, \ldots, x_{m}\right\}$. Then we set $A(x)=\left(x-x_{1}\right) \cdots\left(x-x_{m}\right)$.
In the latter case, one counter-example is

$$
\begin{equation*}
A(x)=\sin \left(\frac{1}{(x-1)^{2}}\right) \exp \left(-\frac{1}{(x-1)^{2}}\right) \tag{38}
\end{equation*}
$$

- Sufficiency. All we need to prove is the following:

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with radius of convergence $R>0$. Assume there are $x_{n} \in(-R, R)$ such that $f\left(x_{n}\right)=0$ and $\lim _{n \rightarrow \infty} x_{n}=r \in(-R, R)$, then $a_{n}=0$ for all $n=0,1,2, \ldots$.
Wlog $r>0$. For simplicity of presentation we will assume $r<1<R$. Note that this can always be achieved through a change of variable $z=L x$ for appropriate $L>0$. Also note that it suffices to prove $f(x)=0$ for all x in some open interval containing 0 .

Since

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=R^{-1}<1, \tag{39}
\end{equation*}
$$

there is $M>0$ such that

$$
\begin{equation*}
\forall n=0,1,2, \ldots . \quad\left|a_{n}\right|<M \tag{40}
\end{equation*}
$$

Now let $r_{1} \in(r, 1)$ be arbitrary. For any $x \in\left(-r_{1}, r_{1}\right)$ we estimate

$$
\begin{equation*}
\left|f^{(k)}(x)\right|=\left|\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n} x^{n-k}\right| \leqslant M \sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) r_{1}^{n-k} . \tag{41}
\end{equation*}
$$

Notice that for any $y \in(0,1)$

$$
\begin{equation*}
\frac{1}{1-y}=\sum_{n=0}^{\infty} y^{n} . \tag{42}
\end{equation*}
$$

By the theory of termwise differentiation we have

$$
\begin{equation*}
\left(\frac{1}{1-y}\right)^{(k)}=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) y^{n-k} . \tag{43}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) r_{1}=\frac{k!}{\left(1-r_{1}\right)^{k}} \tag{44}
\end{equation*}
$$

Consequently for any $x \in\left(-r_{1}, r_{1}\right)$

$$
\begin{equation*}
\frac{\left|f^{(k)}(x)\right|}{k!} \leqslant \frac{M}{\left(1-r_{1}\right)^{k}} . \tag{45}
\end{equation*}
$$

Next take any $x_{0} \in\left(-r_{1}, r_{1}\right)$, we have, for any $x \in\left(-r_{1}, r_{1}\right)$,

$$
\begin{align*}
\left|f(x)-\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}\right| & =\left|\frac{f^{(k+1)}(c)}{(k+1)!}\left(x-x_{0}\right)^{k+1}\right| \\
& \leqslant\left|\frac{M}{\left(1-r_{1}\right)^{k+1}}\left(x-x_{0}\right)^{k+1}\right| . \tag{46}
\end{align*}
$$

Therefore we have, for any x such that $\left|x-x_{0}\right|<1-r_{1}$,

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}}{n!}\left(x-x_{0}\right)^{n} . \tag{47}
\end{equation*}
$$

Now by similar argument as in the "weaker sufficient conditions" below, the fact that $f\left(x_{n}\right)=0$ and $\lim _{n \rightarrow \infty} x_{n}=r$ implies

$$
\begin{equation*}
f^{(n)}(r)=0 \tag{48}
\end{equation*}
$$

for all $n=0,1,2, \ldots$. Taking $r_{1}=\frac{1+r}{2}$ and setting $x_{0}=r$ in the above analysis, we see that

$$
\begin{equation*}
f(x)=0 \tag{49}
\end{equation*}
$$

for all $x \in(r-\delta(r), r+\delta(r))$ where $\delta(r)=\frac{1-r}{2}$.
Finally notice that once this is done, we can replace r by a smaller number, say $r-\frac{\delta(r)}{2}$ and repeat the above analysis, concluding that

$$
\begin{equation*}
f(x)=0 \tag{50}
\end{equation*}
$$

for all $x \in(r-2 \delta(r), r+2 \delta(r))$. After finitely such iterations, we would have the desired open set containing 0 and on which $f(x)$ is identically 0 . Since

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(0)}{n!} \tag{51}
\end{equation*}
$$

this means $a_{n}=0$ for all n.

- Weaker sufficient conditions with simpler proof: $0 \in E$ and is a limit point of E. That is there are $x_{n} \in E$ such that $x_{n} \neq 0, \lim _{n \rightarrow \infty} x_{n}=0$.

Proof. By assumption $R>0$. In this case at least one of $\left\{x_{n}>0\right\}$ and $\left\{x_{n}<0\right\}$ is infinite. Wlog we assume there are infinitely many $x_{n}>0$. We can order them as

$$
\begin{equation*}
x_{1}>x_{2}>\cdots>0 \tag{52}
\end{equation*}
$$

Since $0 \in E$ we have

$$
\begin{equation*}
a_{0}-b_{0}=A(0)=0 . \tag{53}
\end{equation*}
$$

Now since $A^{\prime}(0)$ exists,

$$
\begin{equation*}
A^{\prime}(0)=\lim _{n \rightarrow \infty} \frac{A\left(x_{n}\right)-A(0)}{x_{n}-0}=0 \Longrightarrow a_{1}=b_{1} \tag{54}
\end{equation*}
$$

Next by MVT, there are

$$
\begin{equation*}
\xi_{n} \in\left(x_{n+1}, x_{n}\right) \tag{55}
\end{equation*}
$$

such that $A^{\prime}\left(\xi_{n}\right)=0$. Then since $A^{\prime \prime}(0)$ exists we have

$$
\begin{equation*}
A^{\prime \prime}(0)=\lim _{n \longrightarrow \infty} \frac{A^{\prime}\left(\xi_{n}\right)-A^{\prime}(0)}{\xi_{n}-0}=0 \Longrightarrow a_{2}=b_{2} . \tag{56}
\end{equation*}
$$

Now it is easy to prove by induction that $a_{n}=b_{n}$ for all n.
Question 8. (Extra 2 pts) Prove that Peano's curve is continuous and onto from $[0,1]$ to $[0,1]^{2}$.

Proof.

- Continuity. We see that

$$
\begin{equation*}
\left\|f_{n+1}(x)-f_{n}(x)\right\| \leqslant \sqrt{2} 3^{-n} \tag{57}
\end{equation*}
$$

for every $n \in \mathbb{N}$ and $x \in[0,1]$. So by the M-test the convergence is uniform. Obviously each $f_{n}(x)$ is continuous. Therefore the limit $f(x)$ exists and is continuous.

- Onto. Consider any $(x, y) \in[0,1]^{2}$. Then it belongs to at least one of the nine squares constructed in Step 2. Thus there is $t_{2} \in[0,1]$ such that

$$
\begin{equation*}
\left\|f_{2}\left(t_{2}\right)-(x, y)\right\| \leqslant \sqrt{2} 3^{-1} \tag{58}
\end{equation*}
$$

Similarly we can get $t_{3} \in[0,1]$ such that

$$
\begin{equation*}
\left\|f_{3}\left(t_{3}\right)-(x, y)\right\| \leqslant \frac{\sqrt{2}}{3^{2}}, \quad \ldots . \quad\left\|f_{n}\left(t_{n}\right)-(x, y)\right\| \leqslant \frac{\sqrt{2}}{3^{n}}, \quad \ldots \tag{59}
\end{equation*}
$$

Since $[0,1]$ is compact, by Bolzano-Weierstrass there is a subsequence

$$
\begin{equation*}
t_{n_{k}} \longrightarrow t_{\omega} \in[0,1] . \tag{60}
\end{equation*}
$$

We will prove that $f\left(t_{\omega}\right)=(x, y)$.

Let $\varepsilon>0$ be arbitrary. Since $f(t)$ is continuous there is $\delta>0$ such that

$$
\begin{equation*}
\left|t-t_{\omega}\right|<\delta \Longrightarrow\left\|f(t)-f\left(t_{\omega}\right)\right\|<\frac{\varepsilon}{3} . \tag{61}
\end{equation*}
$$

Set $K_{1} \in \mathbb{N}$ be such that $k>K_{1} \Longrightarrow\left|t_{n_{k}}-t_{\omega}\right|<\delta$.
On the other hand, as $f_{n} \longrightarrow f$ uniformly, there is $K_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
k>K_{2} \Longrightarrow \forall x \in[0,1], \quad\left\|f_{n_{k}}(t)-f(t)\right\|<\frac{\varepsilon}{3} . \tag{62}
\end{equation*}
$$

Finally set K_{3} such that

$$
\begin{equation*}
\frac{\sqrt{2}}{3^{n_{K_{3}}}}<\frac{\varepsilon}{3} . \tag{63}
\end{equation*}
$$

Now take $K:=\max \left\{K_{1}, K_{2}, K_{3}\right\}$. For every $k>K$, we have

$$
\begin{equation*}
\left\|f\left(t_{\omega}\right)-f_{n_{k}}\left(t_{n_{k}}\right)\right\|<\frac{2 \varepsilon}{3} \Longrightarrow\left\|f\left(t_{\omega}\right)-(x, y)\right\|<\varepsilon . \tag{64}
\end{equation*}
$$

Thus ends the proof.

