Math 317 Winter 2014 Homework 3

DUE FEB. 5 2P

e This homework consists of 6 problems of 5 points each. The total is 30.

e You need to fully justify your answers.
Question 1. Calculate the radius of convergence of the power series
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Question 2. Find all x € R where the series
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converges.

Question 3. Consider the infinite series in Question 2.
a) Discuss the uniform convergence of the series.

b) Is the sum a continuous function (meaning: continuous at every x where it is defined)?

Question 4.

a) Prove
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Question 5. Without using Abel’s theorem, prove directly through the re-summation technique that
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converges uniformly on [0,1]. Then prove
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Question 6. Let the radii of convergence for ZZO:() anx™ and ZZO:() b, 2™ be Ry, R respectively.
a) Prove that the radius of convergence R for the series ZZO:O (anby) x™ satisfies R> Ry Ro.

b) Show through an example that strict inequality may hold: R > Ry Rs.

Note: For part a) you shouldn’t assume the existence of any of limy,— oo |an|1/",limn_,oo \bn|1/", or

limy,— 00 |an bn|1/”.



