Math 317 Winter 2014 Homework 3

Due Feb. 5 2p

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answers.

Question 1. Calculate the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{3}{n}+\frac{6}{n^{2}}\right) x^{n} . \tag{1}
\end{equation*}
$$

Question 2. Find all $x \in \mathbb{R}$ where the series
converges.

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} e^{n x} \tag{2}
\end{equation*}
$$

Question 3. Consider the infinite series in Question 2.
a) Discuss the uniform convergence of the series.
b) Is the sum a continuous function (meaning: continuous at every x where it is defined)?

Question 4.

a) Prove

$$
\begin{equation*}
\forall x \in(-1,1), \quad \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} . \tag{3}
\end{equation*}
$$

b) Then prove

$$
\begin{equation*}
\forall x \in(-1,1), \quad \arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \tag{4}
\end{equation*}
$$

Question 5. Without using Abel's theorem, prove directly through the re-summation technique that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \tag{5}
\end{equation*}
$$

converges uniformly on $[0,1]$. Then prove

$$
\begin{equation*}
\frac{\pi}{4}=\arctan 1=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \tag{6}
\end{equation*}
$$

Question 6. Let the radii of convergence for $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ be R_{1}, R_{2} respectively.
a) Prove that the radius of convergence R for the series $\sum_{n=0}^{\infty}\left(a_{n} b_{n}\right) x^{n}$ satisfies $R \geqslant R_{1} R_{2}$.
b) Show through an example that strict inequality may hold: $R>R_{1} R_{2}$.

Note: For part a) you shouldn't assume the existence of any of $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}, \lim _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}$, or $\lim _{n \rightarrow \infty}\left|a_{n} b_{n}\right|^{1 / n}$.

