Math 317 Winter 2014 Homework 3 Solutions

Due Feb. 5 2P

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answers.

Question 1. Calculate the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{3}{n}+\frac{6}{n^{2}}\right) x^{n} \tag{1}
\end{equation*}
$$

Solution. We have

Note that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\limsup _{n \rightarrow \infty}\left(\frac{3}{n}+\frac{6}{n^{2}}\right)^{1 / n} . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{3}{n}\right)^{1 / n}<\left(\frac{3}{n}+\frac{6}{n^{2}}\right)^{1 / n}<\left(\frac{9}{n}\right)^{1 / n} \tag{3}
\end{equation*}
$$

thus by Squeeze Theorem we conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{3}{n}+\frac{6}{n^{2}}\right)^{1 / n}=1 \Longrightarrow \limsup _{n \rightarrow \infty}\left(\frac{3}{n}+\frac{6}{n^{2}}\right)^{1 / n}=1 \tag{4}
\end{equation*}
$$

therefore the radius of convergence is 1 .
Question 2. Find all $x \in \mathbb{R}$ where the series

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} e^{n x} \tag{5}
\end{equation*}
$$

converges.
Solution. For any $x \in \mathbb{R}$, we notice that,

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} e^{n x} \text { converges at } x \in \mathbb{R} \Longleftrightarrow \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} y^{n} \text { converges at } y=e^{x} \text {. } \tag{6}
\end{equation*}
$$

The radius of convergence of the latter (power) series is 1 . Furthermore, at $y=1$, we have
while at $y=-1$, we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} y^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\ln n} \text { converges; } \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} y^{n}=\sum_{n=2}^{\infty} \frac{1}{\ln n} \text { diverges. } \tag{8}
\end{equation*}
$$

Thus $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} y^{n}$ converges if and only if $-1<y \leqslant 1$. Consequently $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} e^{n x}$ converges if and only if $-1<e^{x} \leqslant 1$ which gives $-\infty<x \leqslant 0$.

Question 3. Consider the infinite series in Question 2.
a) Discuss the uniform convergence of the series.
b) Is the sum a continuous function (meaning: continuous at every x where it is defined)?

Solution.

a) We denote

$$
\begin{equation*}
f(y):=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} y^{n} \tag{9}
\end{equation*}
$$

which is defined for $-1<y \leqslant 1$. Then from a),

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} e^{n x}=g(x):=f\left(e^{x}\right) \tag{10}
\end{equation*}
$$

By Abel's theorem, $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} y^{n}$ converges uniformly on $[0,1]$. Thus for any $\varepsilon>0$ there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall y \in[0,1], \quad \forall m>N, \quad\left|\sum_{n=2}^{m} \frac{(-1)^{n}}{\ln n} y^{n}-f(y)\right|<\varepsilon . \tag{11}
\end{equation*}
$$

This gives:

$$
\begin{equation*}
\forall x \in(-\infty, 0], \quad \forall m>N, \quad\left|\sum_{n=2}^{m} \frac{(-1)^{n}}{\ln n} e^{n x}-g(x)\right|<\varepsilon . \tag{12}
\end{equation*}
$$

Thus $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\ln n} e^{n x}$ converges uniformly on $(-\infty, 0]$.
b) As each $\frac{(-1)^{n}}{\ln n} e^{n x}$ is continuous on $(-\infty, 0]$, the uniform convergence of the series implies that the sum $g(x)$ is continuous on $(-\infty, 0]$. Thus $g(x)$ is a continuous function.

Question 4.

a) Prove

$$
\begin{equation*}
\forall x \in(-1,1), \quad \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \tag{13}
\end{equation*}
$$

b) Then prove

$$
\begin{equation*}
\forall x \in(-1,1), \quad \arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} . \tag{14}
\end{equation*}
$$

Solution.

a) We prove by definition. (Recall that the RHS being the Taylor expansion of the LHS has nothing to do with whether the two sides are equal or not!)

Let $x \in(-1,1)$ be arbitrary. Let $\varepsilon>0$ be arbitrary. Take $N>\log _{|x|} \varepsilon$. Then for every $n>N$, we have

Therefore

$$
\begin{equation*}
\left|\frac{1}{1+x^{2}}-\left(1-x^{2}+\cdots+(-1)^{n} x^{2 n}\right)\right|=\left|\frac{x^{2 n+2}}{1+x^{2}}\right|<|x|^{N}<\varepsilon . \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\forall x \in(-1,1), \quad \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} . \tag{16}
\end{equation*}
$$

b) Let $x \in(-1,1)$ be arbitrary. By Fundamental Theorem of Calculus Version 1,

$$
\begin{equation*}
\arctan x=\int_{0}^{x} \frac{1}{1+u^{2}} \mathrm{~d} u \tag{17}
\end{equation*}
$$

On the other hand, as $|x|<1$, the series $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$ converges uniformly on $[-|x|,|x|]$ and therefore

$$
\begin{equation*}
\int_{0}^{x} \frac{1}{1+u^{2}} \mathrm{~d} u=\sum_{n=0}^{\infty} \int_{0}^{x}(-1)^{n} u^{2 n} \mathrm{~d} u=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \tag{18}
\end{equation*}
$$

Thus ends the proof.
Question 5. Without using Abel's theorem, prove directly through the re-summation technique that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \tag{19}
\end{equation*}
$$

converges uniformly on $[0,1]$. Then prove

$$
\begin{equation*}
\frac{\pi}{4}=\arctan 1=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \tag{20}
\end{equation*}
$$

Solution. We prove that the series is uniformly Cauchy, that is for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for every $m>n>N$,

$$
\begin{equation*}
\forall x \in[0,1], \quad\left|\sum_{k=n+1}^{m} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}\right|<\varepsilon \tag{21}
\end{equation*}
$$

Let $\varepsilon>0$ be arbitrary. Since $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ is convergent, there is $N \in \mathbb{N}$ such that for every $m>n>N$,
Now for the same n, m we denote $\left|\sum_{k=n+1}^{m} \frac{(-1)^{k}}{2 k+1}\right|<\frac{\varepsilon}{2}$.

$$
\begin{equation*}
S_{k}:=\sum_{l=n+1}^{k} \frac{(-1)^{l}}{2 l+1} \tag{23}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\forall k \in\{n+1, \ldots, m\}, \quad \frac{(-1)^{k}}{2 k+1}=S_{k}-S_{k-1} ; \quad\left|S_{k}\right|<\frac{\varepsilon}{2} \tag{24}
\end{equation*}
$$

Here we set $S_{n}:=0$.
Now we calculate

$$
\begin{align*}
\left|\sum_{k=n+1}^{m} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}\right| & =\left|\sum_{k=n+1}^{m}\left(S_{k}-S_{k-1}\right) x^{2 k+1}\right| \\
& =\left|\left(S_{n+1}-S_{n}\right) x^{2(n+1)+1}+\cdots+\left(S_{m}-S_{m-1}\right) x^{2 m+1}\right| \\
& =\left|S_{m} x^{2 m+1}-S_{n} x^{2(n+1)+1}+\sum_{l=n+1}^{m-1} S_{l}\left(x^{2 l+1}-x^{2 l+3}\right)\right| \\
& \leqslant\left|S_{m}\right|+\sum_{l=n+1}^{m-1}\left|S_{l}\right|\left(x^{2 l+1}-x^{2 l+3}\right) \\
& \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}\left[\sum_{l=n+1}^{m-1}\left(x^{2 l+1}-x^{2 l+3}\right)\right] \\
& =\frac{\varepsilon}{2}+\frac{\varepsilon}{2}\left[x^{2 n+3}-x^{2 m+1}\right] \\
& \leqslant \varepsilon \tag{25}
\end{align*}
$$

where we have taken advantage of $S_{n}=0, x \in[0,1]$, and for such $x, x^{2 l+1}-x^{2 l+3} \geqslant 0$.
Now let

$$
\begin{equation*}
F(x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} . \tag{26}
\end{equation*}
$$

From the above (and Question 4) we know that
i. $F(x)$ is continuous on $[0,1]$;
ii. $F(x)=\arctan x$ on $[0,1)$.

Since $\arctan x$ is continuous at $x=1$, we must have

$$
\begin{equation*}
\frac{\pi}{4}=\arctan 1=\lim _{x \rightarrow 1} \arctan x=\lim _{x \rightarrow 1} F(x)=F(1)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \tag{27}
\end{equation*}
$$

Question 6. Let the radii of convergence for $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ be R_{1}, R_{2} respectively.
a) Prove that the radius of convergence R for the series $\sum_{n=0}^{\infty}\left(a_{n} b_{n}\right) x^{n}$ satisfies $R \geqslant R_{1} R_{2}$.
b) Show through an example that strict inequality may hold: $R>R_{1} R_{2}$.

Note: For part a) you shouldn't assume the existence of any of $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}, \lim _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}$, or $\lim _{n \rightarrow \infty}\left|a_{n} b_{n}\right|^{1 / n}$.

Solution.

a) Since

$$
\begin{equation*}
R_{1}^{-1}=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} ; \quad R_{2}^{-1}=\limsup _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n} ; \quad R^{-1}=\limsup _{n \rightarrow \infty}\left|a_{n} b_{n}\right|^{1 / n} \tag{28}
\end{equation*}
$$

all we need to prove is the following:
Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be non-negative sequences. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right) \leqslant\left(\limsup _{n \rightarrow \infty} x_{n}\right)\left(\limsup _{n \rightarrow \infty} y_{n}\right) . \tag{29}
\end{equation*}
$$

By definition

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right) & =\lim _{n \rightarrow \infty}\left[\sup \left\{x_{n} y_{n}, x_{n+1} y_{n+1}, x_{n+2} y_{n+2}, \ldots\right\}\right] \\
& \leqslant \lim _{n \rightarrow \infty}\left[\sup \left\{x_{n}, x_{n+1}, \ldots\right\} \cdot \sup \left\{y_{n}, y_{n+1}, \ldots\right\}\right] \\
& =\left[\lim _{n \rightarrow \infty}\left(\sup \left\{x_{n}, x_{n+1}, \ldots\right\}\right)\right] \cdot\left[\lim _{n \rightarrow \infty}\left(\sup \left\{y_{n}, y_{n+1}, \ldots\right\}\right)\right] \\
& =\left(\limsup _{n \rightarrow \infty} x_{n}\right)\left(\limsup _{n \rightarrow \infty} y_{n}\right) . \tag{30}
\end{align*}
$$

b) Take $a_{n}=\left[1+(-1)^{n}\right]$ and $b_{n}=\left[1+(-1)^{n+1}\right]$. Then $a_{n} b_{n}=0$ for all n. Therefore $\infty=R>R_{1} R_{2}=1$.

