
Math 317 Winter 2014 Homework 3 Solutions

Due Feb. 5 2p

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answers.

Question 1. Calculate the radius of convergence of the power series

∑

n=1

∞ (

3

n
+

6

n2

)

xn. (1)

Solution. We have

limsup
n→∞

|an|
1/n = limsup

n→∞

(

3
n

+
6

n2

)

1/n

. (2)

Note that
(

3
n

)

1/n

<

(

3
n

+
6
n2

)

1/n

<

(

9
n

)

1/n

(3)

thus by Squeeze Theorem we conclude

lim
n→∞

(

3
n

+
6

n2

)

1/n

=1� limsup
n→∞

(

3
n

+
6

n2

)

1/n

=1 (4)

therefore the radius of convergence is 1.

Question 2. Find all x∈R where the series

∑

n=2

∞
(−1)n

lnn
enx (5)

converges.

Solution. For any x∈R, we notice that,

∑

n=2

∞
(−1)n

lnn
enx converges at x∈R�

∑

n=2

∞
(−1)n

lnn
yn converges at y = ex. (6)

The radius of convergence of the latter (power) series is 1. Furthermore, at y = 1, we have

∑

n=2

∞
(−1)n

lnn
yn =

∑

n=0

∞
(−1)n

lnn
converges; (7)

while at y =−1, we have
∑

n=2

∞
(−1)n

lnn
yn =

∑

n=2

∞
1

lnn
diverges. (8)

Thus
∑

n=2
∞ (−1)n

lnn
yn converges if and only if −1< y 6 1. Consequently

∑

n=2
∞ (−1)n

lnn
enx converges if

and only if −1 < ex 6 1 which gives −∞<x 6 0.

Question 3. Consider the infinite series in Question 2.

a) Discuss the uniform convergence of the series.
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b) Is the sum a continuous function (meaning: continuous at every x where it is defined)?

Solution.

a) We denote

f(y)8
∑

n=2

∞
(−1)n

lnn
yn (9)

which is defined for −1 < y 6 1. Then from a),

∑

n=2

∞
(−1)n

lnn
enx = g(x)8 f(ex). (10)

By Abel’s theorem,
∑

n=2
∞ (−1)n

lnn
yn converges uniformly on [0,1]. Thus for any ε> 0 there is

N ∈N such that

∀y ∈ [0, 1], ∀m >N,

∣

∣

∣

∣

∣

∑

n=2

m

(−1)n

lnn
yn − f(y)

∣

∣

∣

∣

∣

<ε. (11)

This gives:

∀x∈ (−∞, 0], ∀m >N,

∣

∣

∣

∣

∣

∑

n=2

m

(−1)n

lnn
enx − g(x)

∣

∣

∣

∣

∣

<ε. (12)

Thus
∑

n=0
∞ (−1)n

lnn
enx converges uniformly on (−∞, 0].

b) As each
(−1)n

lnn
enx is continuous on (−∞, 0], the uniform convergence of the series implies

that the sum g(x) is continuous on (−∞, 0]. Thus g(x) is a continuous function.

Question 4.

a) Prove

∀x∈ (−1, 1),
1

1 +x2
=1− x2 +x4−� =

∑

n=0

∞

(−1)n x2n. (13)

b) Then prove

∀x∈ (−1, 1), arctanx =
∑

n=0

∞
(−1)n

2 n+1
x2n+1. (14)

Solution.

a) We prove by definition. (Recall that the RHS being the Taylor expansion of the LHS has
nothing to do with whether the two sides are equal or not!)

Let x ∈ (−1, 1) be arbitrary. Let ε > 0 be arbitrary. Take N > log|x|ε. Then for every
n >N , we have

∣

∣

∣

∣

1

1 + x2
− (1−x2 +� +(−1)n x2n)

∣

∣

∣

∣

=

∣

∣

∣

∣

x2n+2

1+ x2

∣

∣

∣

∣

< |x|N <ε. (15)

Therefore

∀x∈ (−1, 1),
1

1 +x2
=1− x2 +x4−� =

∑

n=0

∞

(−1)n x2n. (16)

b) Let x∈ (−1, 1) be arbitrary. By Fundamental Theorem of Calculus Version 1,

arctanx =

∫

0

x 1
1 +u2

du. (17)
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On the other hand, as |x|< 1, the series
∑

n=0
∞ (−1)n x2n converges uniformly on [−|x|, |x|]

and therefore
∫

0

x 1
1 +u2 du =

∑

n=0

∞ ∫

0

x

(−1)n u2n du=
∑

n=0

∞
(−1)n

2 n+1
x2n+1. (18)

Thus ends the proof.

Question 5. Without using Abel’s theorem, prove directly through the re-summation technique that

∑

n=0

∞
(−1)n

2 n+ 1
x2n+1 (19)

converges uniformly on [0, 1]. Then prove

π

4
= arctan 1 =

∑

n=0

∞
(−1)n

2 n+1
= 1−

1
3

+
1
5
−

1
7

+� . (20)

Solution. We prove that the series is uniformly Cauchy, that is for any ε > 0, there is N ∈N such
that for every m >n > N ,

∀x∈ [0, 1],

∣

∣

∣

∣

∣

∑

k=n+1

m

(−1)k

2 k +1
x2k+1

∣

∣

∣

∣

∣

<ε. (21)

Let ε>0 be arbitrary. Since
∑

n=0
∞ (−1)n

2 n +1
is convergent, there is N ∈N such that for every m>n>N ,

∣

∣

∣

∣

∣

∑

k=n+1

m
(−1)k

2 k + 1

∣

∣

∣

∣

∣

<
ε

2
. (22)

Now for the same n,m we denote

Sk8

∑

l=n+1

k

(−1)l

2 l + 1
(23)

which satisfies

∀k ∈ {n +1,
 , m},
(−1)k

2 k +1
= Sk −Sk−1; |Sk|<

ε

2
. (24)

Here we set Sn8 0.
Now we calculate

∣

∣

∣

∣

∣

∑

k=n+1

m

(−1)k

2 k +1
x2k+1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k=n+1

m

(Sk −Sk−1)x2k+1

∣

∣

∣

∣

∣

=
∣

∣(Sn+1−Sn) x2(n+1)+1 +� +(Sm−Sm−1) x2m+1
∣

∣

=

∣

∣

∣

∣

∣

Sm x2m+1−Sn x2(n+1)+1 +
∑

l=n+1

m−1

Sl (x
2l+1−x2l+3)

∣

∣

∣

∣

∣

6 |Sm|+
∑

l=n+1

m−1

|Sl| (x
2l+1−x2l+3)

6
ε

2
+

ε

2

[

∑

l=n+1

m−1

(x2l+1−x2l+3)

]

=
ε

2
+

ε

2
[x2n+3−x2m+1]

6 ε. (25)
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where we have taken advantage of Sn =0, x∈ [0, 1], and for such x, x2l+1−x2l+3 > 0.
Now let

F (x)8
∑

n=0

∞
(−1)n

2 n+1
x2n+1. (26)

From the above (and Question 4) we know that

i. F (x) is continuous on [0, 1];

ii. F (x) = arctanx on [0, 1).

Since arctanx is continuous at x =1, we must have

π

4
= arctan 1 = lim

x→1
arctanx= lim

x→1
F (x) = F (1) =

∑

n=0

∞
(−1)n

2 n+1
= 1−

1
3

+
1
5
−

1
7

+� . (27)

Question 6. Let the radii of convergence for
∑

n=0
∞

an xn and
∑

n=0
∞

bn xn be R1, R2 respectively.

a) Prove that the radius of convergence R for the series
∑

n=0
∞ (an bn) xn satisfies R > R1 R2.

b) Show through an example that strict inequality may hold: R >R1 R2.

Note: For part a) you shouldn’t assume the existence of any of limn→∞ |an|
1/n, limn→∞ |bn|

1/n, or

limn→∞ |an bn|
1/n.

Solution.

a) Since

R1
−1 = limsup

n→∞
|an|

1/n; R2
−1 = limsup

n→∞
|bn|

1/n; R−1 = limsup
n→∞

|an bn|
1/n (28)

all we need to prove is the following:

Let {xn}, {yn} be non-negative sequences. Then

limsup
n→∞

(xn yn) 6

(

limsup
n→∞

xn

)(

limsup
n→∞

yn

)

. (29)

By definition

limsup
n→∞

(xn yn) = lim
n→∞

[sup {xn yn, xn+1 yn+1, xn+2 yn+2,
 }]

6 lim
n→∞

[sup {xn, xn+1,� } · sup {yn, yn+1,
 }]

=
[

lim
n→∞

(sup {xn, xn+1,
 })
]

·
[

lim
n→∞

(sup {yn, yn+1,
 })
]

=

(

limsup
n→∞

xn

)(

limsup
n→∞

yn

)

. (30)

b) Take an = [1 + (−1)n] and bn = [1 + (−1)n+1]. Then an bn = 0 for all n. Therefore
∞= R >R1 R2 =1.
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