
Math 317 Winter 2014 Homework 2 Solutions

Due Jan. 29 2p

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answers.

Question 1.

a) Prove the root test for
∑

n=1
∞

an:

limsup
n→∞

|an|
1/n < 1� convergent; limsup

n→∞

|an|
1/n > 1� divergent. (1)

b) Point out the mistake in my online lecture notes.

Solution.
Assume

limsup
n→∞

|an|
1/n =R < 1. (2)

Then by definition of limsup , there is N ∈N such that

sup
n>N

{

|an|
1/n

}

<r8 R + 1
2

. (3)

This means

∀n >N , |an|<rn (4)

for 0 < r < 1. Convergence now follows from comparison theorem.
On the other hand, if

limsup
n→∞

|an|
1/n =R > 1, (5)

by definition

R = limsup
n→∞

|an|
1/n8 lim

n→∞

[

sup
k>n

|ak|
1/k

]

. (6)

Since yn8 supk>n |ak|
1/k is decreasing, we have

∀n∈N, sup
k>n

|ak |
1/k

>R > 1� sup
k>n

|ak |> Rk > 1� limsup
n−L∞

|an|> 1. (7)

Therefore limn→∞ |an|=0 cannot hold (If limn→∞ |an|=0 then limsupn→∞ |an|=0) and divergence
follows.

Question 2. Prove the following.

a) fn(x) =
n2 x2

− 3

n2 x + n x+ 1
converges uniformly on [2, 3];

b)
∑

n=1
∞

x3 e−n2x converges uniformly on (0,∞).

Solution.

a) First we have

∀x∈ [2, 3], lim
n→∞

fn(x) =x. (8)
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Now for any ε > 0, take N >
5

ε
, for every n >N , we have

∀x∈ [2, 3], |fn(x)−x| =

∣

∣

∣

∣

(n2 x2− 3)−x (n2 x +nx +1)
n2 x+ nx+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−3−nx2−x

n2 x +nx +1

∣

∣

∣

∣

<
3 +9 n+ 3

2 n2

<
10n

2 n2

=
5
n

<
5
N

<ε. (9)

Thus the convergence is uniform.

b) For each un(x)8 x3 e−n2x, we have

un
′ (x)= 3 x2 e−n2x −n2 x3 e−n2x = (3−n2 x) x2 e−n2x (10)

which is positive when x <
3

n2
and negative when x >

3

n2
. Thus we have

∀x∈ (0,∞), 0 < un(x) 6un

(

3
n2

)

<
27

n6 . (11)

Now for any ε > 0 we take N >
(

27

ε

)

1/6
. Then for every n >N ,

∀x∈ (0,∞), |un(x)− 0|<
27

n6
<

27

N 6
< ε. (12)

Therefore un(x)→ 0 uniformly on (0,∞).

Remark. The following fact, related to b), may be a bit curious:

Since x3 is independent of n, we can write

∑

n=1

∞

x3 e−n2x =x3

[

∑

n=1

∞

e−n2x

]

(13)

and it suffices to prove the uniform convergence of
∑

n=1
∞

e−n2x on (0, ∞). However
this is clearly not true as e−n2x does not converge to 0 uniformly on (0,∞).

Please make sure you understand what is going on here.

Question 3.

a) Prove by definition that if
∑

n=1
∞

un(x) converges uniformly on [a, b], then limn→∞un(x)=
0 uniformly;

b) Show that limn→∞un(x) = 0 uniformly� ∑

n=1
∞

un(x) converges uniformly;

c) Use part a) to prove that
∑

n=1
∞

n e−nx converges on (0,∞) but not uniformly.

Solution.

a) Denote u(x)8 ∑

n=1
∞

un(x). Let ε > 0 be arbitrary.

Since
∑

n=1
∞

un(x) converges uniformly, there is N ∈N such that for all n > N ,

∀x∈ [a, b],

∣

∣

∣

∣

∣

∑

k=1

n

uk(x)−u(x)

∣

∣

∣

∣

∣

<
ε

2
. (14)
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Now for such n, we have, by triangle inequality,

∀x∈ [a, b], |un(x)|6

∣

∣

∣

∣

∣

∑

k=1

n+1

uk(x)−u(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

k=1

n

uk(x)−u(x)

∣

∣

∣

∣

∣

<ε. (15)

Thus by definition un(x)→ 0 uniformly.

b) A counter-example is un(x) =
1

n
for all x.

c) First we show that it converges to 0. Let x∈ (0,∞) be arbitrary. Then x > 0 and

lim
n→∞

n e−nx =0. (16)

Denote un(x)8 n e−nx. We have

un

(

lnn

n

)

=n e−lnn =1. (17)

Thus un(x)→0 cannot be uniform and the convergence of
∑

n=1
∞

n e−nx cannot be uniform.

Question 4. Let un(x) be Riemann integrable on [0,1] for all n. Assume that
∑

n=1
∞

un(x)= f(x)
uniformly on [0, 1]. Prove that f(x) is also Riemann integrable on [0, 1] and furthermore

∑

n=1

∞ ∫

0

1

un(x) dx=

∫

0

1

f(x) dx. (18)

Solution. Let ε > 0 be arbitrary. Denote

fn(x) =
∑

k=1

n

uk(x). (19)

Since fn(x)� f(x) uniformly, there is N ∈N such that for all n >N ,

|fn(x)− f(x)|<
ε

4
. (20)

As fN+1(x) is Riemann integrable, there is a partition P = {0 =x0 < x1 <� < xn =1} such that

U(fN+1, P )−L(fN+1, P ) <
ε

2
. (21)

Denote

Mi8 sup
[xi,xi+1]

fN+1, mi8 inf
[xi,xi+1]

fN+1, (22)

we have

∀x∈ [xi, xi+1], mi 6 fN+1(x) 6Mi. (23)

Together with (20) we have

mi −
ε

4
6 f(x)6 Mi +

ε

4
. (24)

Therefore

U(f , P ) 6
∑

i=0

n−1
(

Mi +
ε

4

)

(xi+1−xi) =U(fN+1, P )+
ε

4
. (25)

Similarly

L(f , P ) >L(fN+1, P )−
ε

4
. (26)

Thus we obtain

U(f , P )−L(f , P ) < ε (27)
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and integrability of f(x) follows.
Now (20) gives for all n > N ,

∣

∣

∣

∣

∫

0

1

f(x) dx−

∫

0

1

fn(x) dx

∣

∣

∣

∣

6

∫

0

1

|f(x)− fn(x)| dx <
ε

4
. (28)

This gives
∑

n=1

∞ ∫

0

1

un(x) dx = lim
n→∞

∫

0

1

fn(x) dx =

∫

0

1

f(x) dx. (29)

Remark. Alternatively, one can use upper and lower integrals:

−ε < f − fN <ε� fN − ε < f < fN + ε (30)

therefore

U(f) 6 U(fN + ε) =U(fN) + ε (b− a); L(f)> L(fN − ε)= L(fN)− ε (b− a). (31)

However one should be careful as in general

U(f + g)� U(f)+ U(g), etc. (32)

Question 5. Bernhard Riemann proposed f(x) =
∑

n=1
∞ sin (n2 x)

n2
as a everywhere continuous but

nowhere differentiable function on [0, 2 π].

a) Prove that f(x) is continuous;

b) Calculate
∫

0

2π
f(x) dx. Justify your answer;

c) (extra 3 pts) Comment on the differentiability of f(x). Can you prove or disprove it? If

not, why?

Solution.

a) Since on R,
∣

∣

∣

∣

sin (n2 x)

n2

∣

∣

∣

∣

6
1

n2
, (33)

By Weierstrass’ M-test
∑

n=1
∞ sin (n2 x)

n2
converges uniformly and continuity immediately

follows.

b) Since each
sin (n2 x)

n2
is continuous and thus integrable on [0, 2 π], uniform convergence gives

∫

0

2π

f(x) dx =
∑

n=1

∞ ∫

0

2π sin (n2 x)

n2
dx =

∑

n=1

∞

0 =0. (34)

c) There is no standard answer to this one.

Question 6. Consider a function u(x, t) defined on [0, 1]× (0,∞). Assume that for each fixed t0,

the function u(x, t0) is continuous in x.

a) Give the definition for the convergence limt→0+u(x, t)= f(x) to be uniform on [0, 1].

b) Prove that, if the convergence is uniform, then f(x) is continuous.

c) Show through an example that when the convergence is not uniform, f(x) may not be

continuous.

4 Math 317 Winter 2014 Homework 2 Solutions



Solution.

a) ∀ε > 0, there is δ > 0 such that for every t∈ (0, δ),

∀x∈ [0, 1], |u(x, t)− f(x)|<ε. (35)

b) Take any x0 ∈ [0, 1]. We prove that f(x) is continuous at x0. Let ε > 0 be arbitrary. Then
there is t0 > 0 such that

∀x∈ [0, 1], |u(x, t0)− f(x)|<
ε

3
. (36)

Now since u(x, t0) is continuous at x0, there is δ > 0 such that

∀x∈ (x0− δ, x0 + δ), |u(x, t0)− u(x0, t0)|<
ε

3
. (37)

Thus we have, for all x∈ (x0− δ, x0 + δ),

|f(x)− f(x0)| = |f(x)− u(x, t0)+ u(x, t0)−u(x0, t0) +u(x0, t0)− f(x0)|

6 |f(x)− u(x, t0)|+ |u(x, t0)−u(x0, t0)|+ |u(x0, t0)− f(x0)|

< ε. (38)

Thus ends the proof.

c) Let u(x, t)= e−x2/t. Then

lim
t→0

u(x, t)=

{

0 x� 0
1 x= 0

. (39)
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