Math 317 Winter 2014 Homework 2 Solutions

Due Jan. 29 2p

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answers.

Question 1.

a) Prove the root test for $\sum_{n=1}^{\infty} a_{n}$:

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup }\left|a_{n}\right|^{1 / n}<1 \Longrightarrow \text { convergent; } \quad \underset{n \rightarrow \infty}{\limsup }\left|a_{n}\right|^{1 / n}>1 \Longrightarrow \text { divergent. } \tag{1}
\end{equation*}
$$

b) Point out the mistake in my online lecture notes.

Solution.

Assume

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=R<1 \tag{2}
\end{equation*}
$$

Then by definition of limsup, there is $N \in \mathbb{N}$ such that

This means

$$
\begin{equation*}
\sup _{n>N}\left\{\left|a_{n}\right|^{1 / n}\right\}<r:=\frac{R+1}{2} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\forall n>N, \quad\left|a_{n}\right|<r^{n} \tag{4}
\end{equation*}
$$

for $0<r<1$. Convergence now follows from comparison theorem.
On the other hand, if
by definition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=R>1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
R=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}:=\lim _{n \rightarrow \infty}\left[\sup _{k>n}\left|a_{k}\right|^{1 / k}\right] . \tag{6}
\end{equation*}
$$

Since $y_{n}:=\sup _{k>n}\left|a_{k}\right|^{1 / k}$ is decreasing, we have

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \sup _{k>n}\left|a_{k}\right|^{1 / k} \geqslant R>1 \Longrightarrow \sup _{k>n}\left|a_{k}\right| \geqslant R^{k}>1 \Longrightarrow \limsup _{n-L \infty}\left|a_{n}\right|>1 . \tag{7}
\end{equation*}
$$

Therefore $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ cannot hold $\left(\operatorname{If} \lim _{n \rightarrow \infty}\left|a_{n}\right|=0\right.$ then $\left.\limsup _{n \rightarrow \infty}\left|a_{n}\right|=0\right)$ and divergence follows.

Question 2. Prove the following.
a) $f_{n}(x)=\frac{n^{2} x^{2}-3}{n^{2} x+n x+1}$ converges uniformly on $[2,3]$;
b) $\sum_{n=1}^{\infty} x^{3} e^{-n^{2} x}$ converges uniformly on $(0, \infty)$.

Solution.

a) First we have

$$
\begin{equation*}
\forall x \in[2,3], \quad \lim _{n \rightarrow \infty} f_{n}(x)=x \tag{8}
\end{equation*}
$$

Now for any $\varepsilon>0$, take $N>\frac{5}{\varepsilon}$, for every $n>N$, we have

$$
\begin{align*}
\forall x \in[2,3], \quad\left|f_{n}(x)-x\right| & =\left|\frac{\left(n^{2} x^{2}-3\right)-x\left(n^{2} x+n x+1\right)}{n^{2} x+n x+1}\right| \\
& =\left|\frac{-3-n x^{2}-x}{n^{2} x+n x+1}\right| \\
& <\frac{3+9 n+3}{2 n^{2}} \\
& <\frac{10 n}{2 n^{2}} \\
& =\frac{5}{n}<\frac{5}{N}<\varepsilon . \tag{9}
\end{align*}
$$

Thus the convergence is uniform.
b) For each $u_{n}(x):=x^{3} e^{-n^{2} x}$, we have

$$
\begin{equation*}
u_{n}^{\prime}(x)=3 x^{2} e^{-n^{2} x}-n^{2} x^{3} e^{-n^{2} x}=\left(3-n^{2} x\right) x^{2} e^{-n^{2} x} \tag{10}
\end{equation*}
$$

which is positive when $x<\frac{3}{n^{2}}$ and negative when $x>\frac{3}{n^{2}}$. Thus we have

$$
\begin{equation*}
\forall x \in(0, \infty), \quad 0<u_{n}(x) \leqslant u_{n}\left(\frac{3}{n^{2}}\right)<\frac{27}{n^{6}} . \tag{11}
\end{equation*}
$$

Now for any $\varepsilon>0$ we take $N>\left(\frac{27}{\varepsilon}\right)^{1 / 6}$. Then for every $n>N$,

$$
\begin{equation*}
\forall x \in(0, \infty), \quad\left|u_{n}(x)-0\right|<\frac{27}{n^{6}}<\frac{27}{N^{6}}<\varepsilon \tag{12}
\end{equation*}
$$

Therefore $u_{n}(x) \rightarrow 0$ uniformly on $(0, \infty)$.
Remark. The following fact, related to b), may be a bit curious:
Since x^{3} is independent of n, we can write

$$
\begin{equation*}
\sum_{n=1}^{\infty} x^{3} e^{-n^{2} x}=x^{3}\left[\sum_{n=1}^{\infty} e^{-n^{2} x}\right] \tag{13}
\end{equation*}
$$

and it suffices to prove the uniform convergence of $\sum_{n=1}^{\infty} e^{-n^{2} x}$ on $(0, \infty)$. However this is clearly not true as $e^{-n^{2} x}$ does not converge to 0 uniformly on $(0, \infty)$.
Please make sure you understand what is going on here.

Question 3.

a) Prove by definition that if $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$, then $\lim _{n \rightarrow \infty} u_{n}(x)=$ 0 uniformly;
b) Show that $\lim _{n \rightarrow \infty} u_{n}(x)=0$ uniformly $\Longrightarrow \sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly;
c) Use part a) to prove that $\sum_{n=1}^{\infty} n e^{-n x}$ converges on $(0, \infty)$ but not uniformly.

Solution.

a) Denote $u(x):=\sum_{n=1}^{\infty} u_{n}(x)$. Let $\varepsilon>0$ be arbitrary.

Since $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly, there is $N \in \mathbb{N}$ such that for all $n>N$,

$$
\begin{equation*}
\forall x \in[a, b], \quad\left|\sum_{k=1}^{n} u_{k}(x)-u(x)\right|<\frac{\varepsilon}{2} . \tag{14}
\end{equation*}
$$

Now for such n, we have, by triangle inequality,

$$
\begin{equation*}
\forall x \in[a, b], \quad\left|u_{n}(x)\right| \leqslant\left|\sum_{k=1}^{n+1} u_{k}(x)-u(x)\right|+\left|\sum_{k=1}^{n} u_{k}(x)-u(x)\right|<\varepsilon . \tag{15}
\end{equation*}
$$

Thus by definition $u_{n}(x) \rightarrow 0$ uniformly.
b) A counter-example is $u_{n}(x)=\frac{1}{n}$ for all x.
c) First we show that it converges to 0 . Let $x \in(0, \infty)$ be arbitrary. Then $x>0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n e^{-n x}=0 \tag{16}
\end{equation*}
$$

Denote $u_{n}(x):=n e^{-n x}$. We have

$$
\begin{equation*}
u_{n}\left(\frac{\ln n}{n}\right)=n e^{-\ln n}=1 . \tag{17}
\end{equation*}
$$

Thus $u_{n}(x) \rightarrow 0$ cannot be uniform and the convergence of $\sum_{n=1}^{\infty} n e^{-n x}$ cannot be uniform.
Question 4. Let $u_{n}(x)$ be Riemann integrable on $[0,1]$ for all n. Assume that $\sum_{n=1}^{\infty} u_{n}(x)=f(x)$ uniformly on $[0,1]$. Prove that $f(x)$ is also Riemann integrable on $[0,1]$ and furthermore

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{0}^{1} u_{n}(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x . \tag{18}
\end{equation*}
$$

Solution. Let $\varepsilon>0$ be arbitrary. Denote

$$
\begin{equation*}
f_{n}(x)=\sum_{k=1}^{n} u_{k}(x) . \tag{19}
\end{equation*}
$$

Since $f_{n}(x) \longrightarrow f(x)$ uniformly, there is $N \in \mathbb{N}$ such that for all $n>N$,

$$
\begin{equation*}
\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{4} . \tag{20}
\end{equation*}
$$

As $f_{N+1}(x)$ is Riemann integrable, there is a partition $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ such that

$$
\begin{equation*}
U\left(f_{N+1}, P\right)-L\left(f_{N+1}, P\right)<\frac{\varepsilon}{2} . \tag{21}
\end{equation*}
$$

Denote

$$
\begin{equation*}
M_{i}:=\sup _{\left[x_{i}, x_{i+1}\right]} f_{N+1}, \quad m_{i}:=\inf _{\left[x_{i}, x_{i+1}\right]} f_{N+1}, \tag{22}
\end{equation*}
$$

we have

$$
\begin{equation*}
\forall x \in\left[x_{i}, x_{i+1}\right], \quad m_{i} \leqslant f_{N+1}(x) \leqslant M_{i} . \tag{23}
\end{equation*}
$$

Together with (20) we have

$$
\begin{equation*}
m_{i}-\frac{\varepsilon}{4} \leqslant f(x) \leqslant M_{i}+\frac{\varepsilon}{4} . \tag{24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
U(f, P) \leqslant \sum_{i=0}^{n-1}\left(M_{i}+\frac{\varepsilon}{4}\right)\left(x_{i+1}-x_{i}\right)=U\left(f_{N+1}, P\right)+\frac{\varepsilon}{4} . \tag{25}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
L(f, P) \geqslant L\left(f_{N+1}, P\right)-\frac{\varepsilon}{4} . \tag{26}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
U(f, P)-L(f, P)<\varepsilon \tag{27}
\end{equation*}
$$

and integrability of $f(x)$ follows.
Now (20) gives for all $n>N$,

This gives

$$
\begin{equation*}
\left|\int_{0}^{1} f(x) \mathrm{d} x-\int_{0}^{1} f_{n}(x) \mathrm{d} x\right| \leqslant \int_{0}^{1}\left|f(x)-f_{n}(x)\right| \mathrm{d} x<\frac{\varepsilon}{4} . \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{0}^{1} u_{n}(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x \tag{29}
\end{equation*}
$$

Remark. Alternatively, one can use upper and lower integrals:

$$
\begin{equation*}
-\varepsilon<f-f_{N}<\varepsilon \Longrightarrow f_{N}-\varepsilon<f<f_{N}+\varepsilon \tag{30}
\end{equation*}
$$

therefore

$$
\begin{equation*}
U(f) \leqslant U\left(f_{N}+\varepsilon\right)=U\left(f_{N}\right)+\varepsilon(b-a) ; \quad L(f) \geqslant L\left(f_{N}-\varepsilon\right)=L\left(f_{N}\right)-\varepsilon(b-a) . \tag{31}
\end{equation*}
$$

However one should be careful as in general

$$
\begin{equation*}
U(f+g) \neq U(f)+U(g), \quad \text { etc. } \tag{32}
\end{equation*}
$$

Question 5. Bernhard Riemann proposed $f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}}$ as a everywhere continuous but nowhere differentiable function on $[0,2 \pi]$.
a) Prove that $f(x)$ is continuous;
b) Calculate $\int_{0}^{2 \pi} f(x) \mathrm{d} x$. Justify your answer;
c) (extra 3 pts) Comment on the differentiability of $f(x)$. Can you prove or disprove it? If not, why?

Solution.
a) Since on \mathbb{R},

$$
\begin{equation*}
\left|\frac{\sin \left(n^{2} x\right)}{n^{2}}\right| \leqslant \frac{1}{n^{2}}, \tag{33}
\end{equation*}
$$

By Weierstrass' M-test $\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}}$ converges uniformly and continuity immediately follows.
b) Since each $\frac{\sin \left(n^{2} x\right)}{n^{2}}$ is continuous and thus integrable on $[0,2 \pi]$, uniform convergence gives

$$
\begin{equation*}
\int_{0}^{2 \pi} f(x) \mathrm{d} x=\sum_{n=1}^{\infty} \int_{0}^{2 \pi} \frac{\sin \left(n^{2} x\right)}{n^{2}} \mathrm{~d} x=\sum_{n=1}^{\infty} 0=0 . \tag{34}
\end{equation*}
$$

c) There is no standard answer to this one.

Question 6. Consider a function $u(x, t)$ defined on $[0,1] \times(0, \infty)$. Assume that for each fixed t_{0}, the function $u\left(x, t_{0}\right)$ is continuous in x.
a) Give the definition for the convergence $\lim _{t \rightarrow 0+} u(x, t)=f(x)$ to be uniform on $[0,1]$.
b) Prove that, if the convergence is uniform, then $f(x)$ is continuous.
c) Show through an example that when the convergence is not uniform, $f(x)$ may not be continuous.

Solution.

a) $\forall \varepsilon>0$, there is $\delta>0$ such that for every $t \in(0, \delta)$,

$$
\begin{equation*}
\forall x \in[0,1], \quad|u(x, t)-f(x)|<\varepsilon . \tag{35}
\end{equation*}
$$

b) Take any $x_{0} \in[0,1]$. We prove that $f(x)$ is continuous at x_{0}. Let $\varepsilon>0$ be arbitrary. Then there is $t_{0}>0$ such that

$$
\begin{equation*}
\forall x \in[0,1], \quad\left|u\left(x, t_{0}\right)-f(x)\right|<\frac{\varepsilon}{3} \tag{36}
\end{equation*}
$$

Now since $u\left(x, t_{0}\right)$ is continuous at x_{0}, there is $\delta>0$ such that

$$
\begin{equation*}
\forall x \in\left(x_{0}-\delta, x_{0}+\delta\right), \quad\left|u\left(x, t_{0}\right)-u\left(x_{0}, t_{0}\right)\right|<\frac{\varepsilon}{3} \tag{37}
\end{equation*}
$$

Thus we have, for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$,

$$
\begin{align*}
\left|f(x)-f\left(x_{0}\right)\right| & =\left|f(x)-u\left(x, t_{0}\right)+u\left(x, t_{0}\right)-u\left(x_{0}, t_{0}\right)+u\left(x_{0}, t_{0}\right)-f\left(x_{0}\right)\right| \\
& \leqslant\left|f(x)-u\left(x, t_{0}\right)\right|+\left|u\left(x, t_{0}\right)-u\left(x_{0}, t_{0}\right)\right|+\left|u\left(x_{0}, t_{0}\right)-f\left(x_{0}\right)\right| \\
& <\varepsilon \tag{38}
\end{align*}
$$

Thus ends the proof.
c) Let $u(x, t)=e^{-x^{2} / t}$. Then

$$
\lim _{t \rightarrow 0} u(x, t)= \begin{cases}0 & x \neq 0 \tag{39}\\ 1 & x=0\end{cases}
$$

