
Math 317 Winter 2014 Homework 1

Due Wednesday Jan. 15, 2014 2pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answers.

Question 1. Are the following series convergent or divergent? Justify your answers.
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Question 2. Let
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bn be non-negative series with an>0, bn >0 for all n∈N. Further
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Question 3. Prove by definition, without using improper integrals, that
∑

n=1
∞ 1

n log2 (n + 1)
=∞.

Question 4. Prove that if
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an is a convergent series of positive numbers, then so is∑
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n/(n+1)(Note that this gives another proof of the fact that there can be no “largest” con-
vergent series) (Hint: 1)

Question 5. Let an > 0. Assume that
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also diverges.

Question 6. Assume
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an converges. Prove that
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must also converge.

1. Apply Young’s inequality to obtain a
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