Math 317 Winter 2014 Homework 1

Due Wednesday Jan. 15, 2014 2pm

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answers.

Question 1. Are the following series convergent or divergent? Justify your answers.

$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n!}}, \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$
(1)

Question 2. Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be non-negative series with $a_n > 0$, $b_n > 0$ for all $n \in \mathbb{N}$. Further assume that $\forall n \in \mathbb{N}$, $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Prove that $\sum_{n=1}^{\infty} b_n$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_n$ converges.

Question 3. Prove by definition, without using improper integrals, that $\sum_{n=1}^{\infty} \frac{1}{n \log_2(n+1)} = \infty$.

Question 4. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive numbers, then so is $\sum_{n=1}^{\infty} (a_n)^{n/(n+1)}$ (Note that this gives another proof of the fact that there can be no "largest" convergent series) (Hint: 1)

Question 5. Let $a_n > 0$. Assume that $\sum_{n=1}^{\infty} a_n$ diverges. Prove that $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ also diverges. **Question 6.** Assume $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\sum_{n=1}^{\infty} \frac{a_n}{n}$ must also converge.

^{1.} Apply Young's inequality to obtain $a_n^{n/(n+1)} \leq C_1 a_n + C_2 b_n$.