Comments on Homework 6

March 27, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.
i. $\sqrt{\cos ^{2} t \sin ^{2} t}=\cos t \sin t$. (Hint: $\left.{ }^{1}\right)$
ii. We have, by Green's Theorem

$$
\begin{equation*}
\int_{\partial T^{-1}(D)} \ldots . . \mathrm{d} u+\ldots . \mathrm{d} v=\int_{T^{-1}(D)}\left|\operatorname{det} \frac{\partial(X, Y)}{\partial(u, v)}\right| \mathrm{d}(u, v) \tag{1}
\end{equation*}
$$

(Hint: ${ }^{2}$)
iii. We have by Green's Theorem

$$
\begin{equation*}
\int_{\partial D}|f \mathrm{~d} x+g \mathrm{~d} y|=\int_{D}\left|\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right| \mathrm{d}(x, y) \tag{2}
\end{equation*}
$$

(Hint: ${ }^{3}$)

2. Exercises.

Some related exercises.
Exercise 1. Show through an example that in general

$$
\begin{equation*}
\int_{\partial D}\left|\binom{f}{g} \cdot \boldsymbol{T}\right| \mathrm{d} s=\int_{D}\left|\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right| \mathrm{d}(x, y) \tag{4}
\end{equation*}
$$

does not hold. Here \boldsymbol{T} is the unit tangent vector. (Hint: ${ }^{4}$)

3. Other comments.

- For integration involving spheres, spherical coordinates may or may not be superior to cylindrical coordinates. The safe way is to try a bit of both and see which one gives you simpler integrals.

1. Absolute value.

2. There is no absolute value in Green's Theorem.
3. First so far $\int f \mathrm{~d} x+g \mathrm{~d} y$ is just a symbol and therefore $\int|f \mathrm{~d} x+g \mathrm{~d} y|$ is not defined. If we want to define it, the natural definition should be

$$
\begin{equation*}
\int|f \mathrm{~d} x+g \mathrm{~d} y|:=\int\left|\binom{f}{g} \cdot \boldsymbol{T}\right| \mathrm{d} s \tag{3}
\end{equation*}
$$

where \boldsymbol{T} is the unit tangent vector. But then (2) in general does not hold. See Exercise 1.
4. Take $f=0, g=x$ and $D=[1-\varepsilon, 1] \times[-1,1]$. As $\varepsilon \rightarrow 0$ the RHS $\longrightarrow 0$ but the LHS does not.

