Comments on Homework 5

March 13, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.
i. Assume there are two or more unique representations... (Hint: ${ }^{1}$)
ii. Consider the case $a \neq b$. Then

$$
\begin{equation*}
\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\} \Longrightarrow\{a\}=\{c\},\{a, b\}=\{c, d\} \tag{1}
\end{equation*}
$$

This is the only possibility because $\{a\}$ has one element, $\{c, d\}$ has two, so $\{a\} \neq\{c$, $d\}$. (Hint: ${ }^{2}$)
iii. Re-order \mathbb{N} as follows to obtain $\omega \cdot \omega+1$:

$$
\begin{equation*}
2^{1}<2^{2}<2^{3}<\cdots<3^{1}<3^{2}<3^{3}<\cdots<5^{1}<5^{2}<\cdots<1 \tag{2}
\end{equation*}
$$

(Hint: ${ }^{3}$)

2. Exercises.

Some related exercises.
Exercise 1. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be convergent series. Prove that $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$ is also convergent and furthermore

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n} . \tag{3}
\end{equation*}
$$

Note that this is used in all proofs of Question 1: $\sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}}-\sum_{n=1}^{\infty} \frac{b_{n}}{10^{n}}=0 \Longrightarrow \sum_{n=1}^{\infty} \frac{a_{n}-b_{n}}{10^{n}}=0$. (Sol:4)
Exercise 2. Find two infinite series $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ such that

$$
\begin{equation*}
\left|\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)\right| \geqslant\left|a_{1}-b_{1}\right| \tag{6}
\end{equation*}
$$

does not hold. (Hint: ${ }^{5}$)

1. "two or more unique" does not make sense.
2. $a \neq b$ does not automatically mean $c \neq d$.
3. A re-ordering should involve all elements in the set. But there are natural numbers not of the form p^{k} with p prime and $k \in \mathbb{N}$.
4. We prove $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$ is Cauchy. Let $\varepsilon>0$ be arbitrary. Then there are N_{1}, N_{2} such that

$$
\begin{equation*}
\forall m>n>N_{1}, \quad\left|\sum_{n+1}^{m} a_{k}\right|<\frac{\varepsilon}{2} ; \quad \forall m>n>N_{2}, \quad\left|\sum_{n+1}^{m} b_{k}\right|<\frac{\varepsilon}{2} . \tag{4}
\end{equation*}
$$

Take $N=\max \left\{N_{1}, N_{2}\right\}$. Then for all $m>n>N$, we have

$$
\begin{equation*}
\left|\sum_{n+1}^{m}\left(a_{k}-b_{k}\right)\right| \leqslant\left|\sum_{n+1}^{m} a_{k}\right|+\left|\sum_{n+1}^{m} b_{k}\right|<\varepsilon . \tag{5}
\end{equation*}
$$

5. $1+0+0+\cdots$ and $0+1+0+\cdots$.

Exercise 3. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be convergent series. Let $\left\{n_{k}\right\},\left\{m_{k}\right\}$ be two subsequences of $\{n\}$ such that $\left\{n_{1}, n_{2}, \ldots.\right\} \cup\left\{m_{1}, m_{2}, \ldots.\right\}=\mathbb{N}=\{1,2, \ldots\}$ and $\left\{n_{1}, n_{2}, \ldots\right\} \cap\left\{m_{1}, m_{2}, \ldots.\right\}=\varnothing$. Now define a new series $\sum_{n=1}^{\infty} c_{n}$ as

$$
c_{n}=\left\{\begin{array}{ll}
a_{k} & n=n_{k} \tag{7}\\
b_{k} & n=m_{k}
\end{array} .\right.
$$

Does it follow that $\sum_{n=1}^{\infty} c_{n}$ converges? If so what is the sum? (Hint: ${ }^{6}$)
Exercise 4. Let X be a finite ordered set with a unique minimal element x_{0}. Prove that x_{0} is in fact a least element. (Sol: ${ }^{7}$)
Exercise 5. Let X be partially ordered and such that every finite non-empty subset has a least element. Prove that X is linearly ordered. Is X well-ordered? (Hint: ${ }^{8}$)

Exercise 6. Let X be partially ordered and such that every countable non-empty subset has a least element. Is X well-ordered? (Hint: ${ }^{9}$)

3. Other comments.

- When re-ordering a set, please give explicit rules, unless the rule is obvious.
- "Prove: There is a unique ..." means you need to both prove the existence and uniqueness.

6. Same idea as Exercise 1.

7. Assume the contrary. Then there is $x_{1} \in X-\left\{x_{0}\right\}$ such that $x_{0}<x_{1}$ does not hold. As x_{0} is the unique minimal element, there must be $x_{2} \in X$ such that $x_{2}<x_{1}$. But $x_{2} \neq x_{0}$ since otherwise $x_{0}<x_{1}$. Therefore $x_{2} \in X-\left\{x_{0}, x_{1}\right\}$. As x_{2} is not minimal, there is $x_{3}<x_{2}$. We claim that $x_{3} \in X-\left\{x_{0}, x_{1}, x_{2}\right\}$. Obviously $x_{3} \neq x_{2}$. If $x_{3}=x_{1}$ then $x_{1}<x_{2}$ contradicting $x_{2}<x_{1}$; On the other hand if $x_{3}=x_{0}$, we have $x_{0}<x_{2}<x_{1} \Longrightarrow x_{0}<x_{1}$ contradiction again. Therefore $x_{3} \in X-\left\{x_{0}, x_{1}, x_{2}\right\}$. Now since x_{3} is not minimal, we must have $x_{4} \in X-\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ such that $x_{4}<x_{3}$, and so on. As X is finite, this must stop at some finite step k, that is
$x_{k}<x_{k-1}<\cdots<x_{1} ; \quad$ There is no $x \in X-\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ such that $x<x_{k}$ and $x_{0}<x_{k}$ does not hold.
Thus $x_{k} \neq x_{0}$ is a second minimal element. Contradiction.
8. Any $\{x, y\} \subseteq X$ has a least element $\Longrightarrow x \leqslant y$ or $x \geqslant y ; \mathbb{Z}$.
9. By hypothesis every 2 -element subset has a least element therefore X is in fact linearly ordered. Now assume there is a subset Y that does not have a least element. By hypothesis Y cannot be finite. Take $y_{1} \in Y$, there is $y_{2} \in Y-\left\{y_{1}\right\}$ such that $y_{2}<y_{1}$. Then there is $y_{3}<y_{2}<y_{1}$, and so on.
