Comments on Homework 5

March 13, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.

- i. Assume there are two or more unique representations... (Hint:¹)
- ii. Consider the case $a \neq b$. Then

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\} \Longrightarrow \{a\} = \{c\},\{a,b\} = \{c,d\}.$$
(1)

This is the only possibility because $\{a\}$ has one element, $\{c, d\}$ has two, so $\{a\} \neq \{c, d\}$. (Hint:²)

iii. Re-order \mathbb{N} as follows to obtain $\omega \cdot \omega + 1$:

$$2^{1} < 2^{2} < 2^{3} < \dots < 3^{1} < 3^{2} < 3^{3} < \dots < 5^{1} < 5^{2} < \dots < 1$$

$$\tag{2}$$

 $(Hint:^3)$

2. Exercises.

Some related exercises.

Exercise 1. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series. Prove that $\sum_{n=1}^{\infty} (a_n - b_n)$ is also convergent and furthermore

$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n.$$
(3)

Note that this is used in all proofs of Question 1: $\sum_{n=1}^{\infty} \frac{a_n}{10^n} - \sum_{n=1}^{\infty} \frac{b_n}{10^n} = 0 \Longrightarrow \sum_{n=1}^{\infty} \frac{a_n - b_n}{10^n} = 0.$ (Sol:⁴) **Exercise 2.** Find two infinite series $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ such that

$$\left|\sum_{n=1}^{\infty} (a_n - b_n)\right| \ge |a_1 - b_1| \tag{6}$$

does not hold. (Hint: 5)

1. "two or more unique" does not make sense.

2. $a \neq b$ does not automatically mean $c \neq d$.

3. A re-ordering should involve all elements in the set. But there are natural numbers not of the form p^k with p prime and $k \in \mathbb{N}$.

4. We prove $\sum_{n=1}^{\infty} (a_n - b_n)$ is Cauchy. Let $\varepsilon > 0$ be arbitrary. Then there are N_1, N_2 such that

$$\forall m > n > N_1, \qquad \left| \sum_{n+1}^m a_k \right| < \frac{\varepsilon}{2}; \qquad \forall m > n > N_2, \qquad \left| \sum_{n+1}^m b_k \right| < \frac{\varepsilon}{2}. \tag{4}$$

Take $N = \max \{N_1, N_2\}$. Then for all m > n > N, we have

$$\left|\sum_{n+1}^{m} (a_k - b_k)\right| \leq \left|\sum_{n+1}^{m} a_k\right| + \left|\sum_{n+1}^{m} b_k\right| < \varepsilon.$$
(5)

5. $1 + 0 + 0 + \cdots$ and $0 + 1 + 0 + \cdots$.

Exercise 3. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series. Let $\{n_k\}, \{m_k\}$ be two subsequences of $\{n\}$ such that $\{n_1, n_2, \dots\} \cup \{m_1, m_2, \dots\} = \mathbb{N} = \{1, 2, \dots\}$ and $\{n_1, n_2, \dots\} \cap \{m_1, m_2, \dots\} = \emptyset$. Now define a new series $\sum_{n=1}^{\infty} c_n$ as

$$c_n = \begin{cases} a_k & n = n_k \\ b_k & n = m_k \end{cases}.$$

$$\tag{7}$$

Does it follow that $\sum_{n=1}^{\infty} c_n$ converges? If so what is the sum? (Hint:⁶)

Exercise 4. Let X be a finite ordered set with a unique minimal element x_0 . Prove that x_0 is in fact a least element. (Sol:⁷)

Exercise 5. Let X be partially ordered and such that every finite non-empty subset has a least element. Prove that X is linearly ordered. Is X well-ordered? (Hint:⁸)

Exercise 6. Let X be partially ordered and such that every countable non-empty subset has a least element. Is X well-ordered? (Hint:⁹)

3. Other comments.

- When re-ordering a set, please give explicit rules, unless the rule is obvious.
- "Prove: There is a unique ..." means you need to both prove the existence and uniqueness.

7. Assume the contrary. Then there is $x_1 \in X - \{x_0\}$ such that $x_0 < x_1$ does not hold. As x_0 is the unique minimal element, there must be $x_2 \in X$ such that $x_2 < x_1$. But $x_2 \neq x_0$ since otherwise $x_0 < x_1$. Therefore $x_2 \in X - \{x_0, x_1\}$. As x_2 is not minimal, there is $x_3 < x_2$. We claim that $x_3 \in X - \{x_0, x_1, x_2\}$. Obviously $x_3 \neq x_2$. If $x_3 = x_1$ then $x_1 < x_2$ contradicting $x_2 < x_1$; On the other hand if $x_3 = x_0$, we have $x_0 < x_2 < x_1 \Longrightarrow x_0 < x_1$ contradiction again. Therefore $x_3 \in X - \{x_0, x_1, x_2\}$. Now since x_3 is not minimal, we must have $x_4 \in X - \{x_0, x_1, x_2, x_3\}$ such that $x_4 < x_3$, and so on. As X is finite, this must stop at some finite step k, that is

 $x_k < x_{k-1} < \dots < x_1$; There is no $x \in X - \{x_0, x_1, \dots, x_{k-1}\}$ such that $x < x_k$ and $x_0 < x_k$ does not hold. (8)

Thus $x_k \neq x_0$ is a second minimal element. Contradiction.

8. Any $\{x, y\} \subseteq X$ has a least element $\implies x \leq y$ or $x \geq y$; \mathbb{Z} .

9. By hypothesis every 2-element subset has a least element therefore X is in fact linearly ordered. Now assume there is a subset Y that does not have a least element. By hypothesis Y cannot be finite. Take $y_1 \in Y$, there is $y_2 \in Y - \{y_1\}$ such that $y_2 < y_1$. Then there is $y_3 < y_2 < y_1$, and so on.

^{6.} Same idea as Exercise 1.