Comments on Homework 4

February 27, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.
i. Take P_{k} such that $x_{k} \notin P_{k} \ldots$ By construction $\forall k, x_{k} \notin \cap_{1}^{\infty} \overline{P_{k}}$.
ii. Since $\lim _{n \rightarrow \infty}\left[\lim _{t \rightarrow 0} D_{n}(t)\right]=+\infty$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-\delta}^{\delta} D_{n}(t) \mathrm{d} t=\infty \tag{1}
\end{equation*}
$$

iii. Since $p(0)^{k} \longrightarrow \infty, \int p(x)^{k} \mathrm{~d} x \longrightarrow \infty$.
iv. There is $\delta>0$ such that for every $x \in(-\delta, \delta), \cos (m x)>0$ for all $m \in \mathbb{N} \cup\{0\}$.
v. Forgot to discuss $n=2$ separately in Question 3.
vi. Forgot to justify $f(x)=$ its Fourier expansion at $x=\frac{\pi}{2}$ in Question 1.
vii. Since f is continuous at x_{0}, there is $\delta>0$ such that f is continuous on $\left(x_{0}-\delta, x_{0}+\delta\right)$.
viii. Let $f(x)$ have Taylor expansion $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ at $x_{0} \in \mathbb{R}$. Assume that the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has radius of convergence $R>0$, then

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad \text { on }\left(x_{0}-R, x_{0}+R\right) . \tag{2}
\end{equation*}
$$

ix. P is countable and therefore can be listed as $\left\{x_{1}, x_{2}, \ldots ., x_{n}\right\}$.
x. Take I_{1}, I_{2}, \ldots open intervals... S is compact, then $S \cap I_{k}$ is compact ...
xi. Question 5: It suffices to prove convergence at $x=0$. ${ }^{1}$

2. Exercises.

Some related exercises.
Exercise 1. Find a function $f(x)>0$ such that $\lim _{x \rightarrow 0} f(x)=+\infty$ but $\int_{-1}^{1} f(x) \mathrm{d} x<\infty$.
Exercise 2. Let $p(x)$ be continuous and non-negative on $[-1,1]$. Prove

$$
\begin{equation*}
p(0)^{k} \longrightarrow \infty \Longrightarrow \int_{-1}^{1} p(x)^{k} \mathrm{~d} x \longrightarrow \infty \tag{3}
\end{equation*}
$$

Show that neither hypothesis (continuity, non-negativity) can be dropped. (Hint: ${ }^{2}$)

Exercise 3.

a) Find a nested sequence of open intervals $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ such that $\cap_{n=1}^{\infty} I_{n}=\varnothing$. (Hint: ${ }^{3}$)

[^0]b) Find a nested sequence of compact intervals $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$ such that $\cap_{n=1}^{\infty} I_{n}$ is not a single point. (Hint: ${ }^{4}$)
Exercise 4. Find a compact set S and an open interval I such that $S \cap I$ is not compact. (Hint: ${ }^{5}$)
Exercise 5. Find a function $f(x)$ such that
i. it is continuous at $x=0$;
ii. For any $\delta>0$, it is not continuous on $(-\delta, \delta)$.
(Hint: ${ }^{6}$)
Exercise 6. Let
\[

f(x)= $$
\begin{cases}\exp \left[-\frac{1}{x^{2}}\right] & x \neq 0 \tag{4}\\ 0 & x=0\end{cases}
$$
\]

Prove that $f(x)$ has Taylor expansion at $x_{0}=0$ and furthermore this power series has radius of convergence ∞. Nevertheless $f(x)$ equals this power series only at $x=0$. (Hint: ${ }^{7}$)

3. Other comments.

- $\quad f(x)>1 \Longrightarrow \int f(x)^{k} \mathrm{~d} x \longrightarrow \infty$.

This is not incorrect, but looks like hard to prove without using Lebesgue integration theory (unless assume f is continuous somewhere, of course).

[^1]
[^0]: 1. This is not sufficient for proving uniform convergence.
 2. $p(0)=2, p(x)=0$.
 3. $(0,1 / n)$;
[^1]: 4. $[1-1 / n, 2+1 / n]$.
 5. $S=\{0\} \cup\{1 / n\}$.
 6. $f(x)=x^{2}$ when x is rational and 0 otherwise.
 7. $f^{(n)}(0)=0$ for all n.
