Comments on Homework 4

February 27, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.

- i. Take P_k such that $x_k \notin P_k$... By construction $\forall k, x_k \notin \bigcap_1^{\infty} \overline{P_k}$.
- ii. Since $\lim_{n\to\infty} [\lim_{t\to 0} D_n(t)] = +\infty$,

$$\lim_{n \to \infty} \int_{-\delta}^{\delta} D_n(t) \, \mathrm{d}t = \infty.$$
(1)

- iii. Since $p(0)^k \longrightarrow \infty$, $\int p(x)^k dx \longrightarrow \infty$.
- iv. There is $\delta > 0$ such that for every $x \in (-\delta, \delta)$, $\cos(mx) > 0$ for all $m \in \mathbb{N} \cup \{0\}$.
- v. Forgot to discuss n = 2 separately in Question 3.
- vi. Forgot to justify f(x) = its Fourier expansion at $x = \frac{\pi}{2}$ in Question 1.
- vii. Since f is continuous at x_0 , there is $\delta > 0$ such that f is continuous on $(x_0 \delta, x_0 + \delta)$.
- viii. Let f(x) have Taylor expansion $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ at $x_0 \in \mathbb{R}$. Assume that the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ has radius of convergence R > 0, then

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad \text{on } (x_0 - R, x_0 + R).$$
(2)

- ix. P is countable and therefore can be listed as $\{x_1, x_2, ..., x_n\}$.
- x. Take I_1, I_2, \ldots open intervals... S is compact, then $S \cap I_k$ is compact ...
- xi. Question 5: It suffices to prove convergence at x = 0.¹

2. Exercises.

Some related exercises.

Exercise 1. Find a function f(x) > 0 such that $\lim_{x\to 0} f(x) = +\infty$ but $\int_{-1}^{1} f(x) dx < \infty$.

Exercise 2. Let p(x) be continuous and non-negative on [-1, 1]. Prove

$$p(0)^k \longrightarrow \infty \Longrightarrow \int_{-1}^1 p(x)^k \, \mathrm{d}x \longrightarrow \infty.$$
 (3)

Show that neither hypothesis (continuity, non-negativity) can be dropped. (Hint:²)

Exercise 3.

a) Find a nested sequence of open intervals $I_1 \supset I_2 \supset I_3 \supset \dots$ such that $\bigcap_{n=1}^{\infty} I_n = \emptyset$. (Hint:³)

2. p(0) = 2, p(x) = 0.

^{1.} This is not sufficient for proving uniform convergence.

^{3.} (0, 1/n);

b) Find a nested sequence of compact intervals $I_1 \supset I_2 \supset I_3 \supset \dots$ such that $\bigcap_{n=1}^{\infty} I_n$ is not a single point. (Hint:⁴)

Exercise 4. Find a compact set S and an open interval I such that $S \cap I$ is not compact. (Hint:⁵)

Exercise 5. Find a function f(x) such that

- i. it is continuous at x = 0;
- ii. For any $\delta > 0$, it is not continuous on $(-\delta, \delta)$.

 $(Hint:^6)$

Exercise 6. Let

$$f(x) = \begin{cases} \exp\left[-\frac{1}{x^2}\right] & x \neq 0\\ 0 & x = 0 \end{cases}$$
(4)

Prove that f(x) has Taylor expansion at $x_0 = 0$ and furthermore this power series has radius of convergence ∞ . Nevertheless f(x) equals this power series only at x = 0. (Hint:⁷)

3. Other comments.

•
$$f(x) > 1 \Longrightarrow \int f(x)^k dx \longrightarrow \infty.$$

This is not incorrect, but looks like hard to prove without using Lebesgue integration theory (unless assume f is continuous somewhere, of course).

- 4. [1-1/n, 2+1/n].
- 5. $S = \{0\} \cup \{1/n\}.$
- 6. $f(x) = x^2$ when x is rational and 0 otherwise.
- 7. $f^{(n)}(0) = 0$ for all *n*.