Comments on Homework 3

February 6, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.

i. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series. Then its radius of convergence can be calculated as

$$R^{-1} = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \tag{1}$$

(Make sure you understand why the radius of convergence can only be calculated from the root test.)

ii. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series with radius of convergence 1. Then the series converges uniformly on $(x_0 - 1, x_0 + 1)$.

(Hint:¹; Make sure you have a counter-example.)

iii. Let f(x) have Taylor expansion $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ at $x = x_0$. Let the radius of convergence for $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be denoted R. If R > 0, then we have

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \qquad \forall x \in (x_0 - R, x_0 + R).$$
(2)

(Hint:² This question can only be satisfactorily answered through complex analysis.)

iv. Let the infinite series of functions $\sum_{n=1}^{\infty} u_n(x)$ be such that

- Each $u_n(x)$ is integrable on [a, b];
- $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b].

Then

$$\int \sum_{n=1}^{\infty} u_n(x) \, \mathrm{d}x = \sum_{n=1}^{\infty} \left[\int u_n(x) \, \mathrm{d}x \right]. \tag{3}$$

(Hint:³ Make sure you understand the difference between $\int_a^b f(x) dx$ and $\int f(x) dx$.)

- v. Let $R_1 = 0, R_2 = \infty$. We define $R_1 R_2 = 0$.
- vi. Assume that

$$f(x) = \sum_{n=1}^{\infty} u_n(x), \qquad \forall x \in (a, b).$$
(4)

- 1. Uniform convergence on [-a, a] for every $0 \le a < 1$. But not on (-1, 1).
- 2. $f(x) = \exp[-1/x^2]$ for $x \neq 0$ and f(0) = 0.

^{3.} The theorem is about definition integral.

Further assume that each $u_n(x)$ is continuous and $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b]. Then

$$f(a) = \sum_{n=1}^{\infty} u_n(a), \qquad f(b) = \sum_{n=1}^{\infty} u_n(b).$$
 (5)

 $(Hint:^4)$

2. Exercises.

Some related exercises.

Exercise 1. Find a power series such that its radius of convergence R does not equal $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$. (Hint:⁵)

Exercise 2. Let $a_n, b_n > 0$. Prove that

$$\limsup_{n \to \infty} (a_n + b_n)^{1/n} = \max\left(\limsup_{n \to \infty} a_n^{1/n}, \limsup_{n \to \infty} b_n^{1/n}\right).$$
(6)

How should we change the formula if we drop the conditions $a_n, b_n > 0$? (Hint:⁶)

Exercise 3. Let $E_1, E_2, ..., E_m \subseteq \mathbb{R}$. Assume that $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on each E_i , i = 1, 2, 3, ..., m. Prove that the series converges uniformly on $\bigcup_{k=1}^{m} E_k$. What if we allow m to be infinite?

Exercise 4. Let $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ satisfy that

- There is M > 0 such that $|\sum_{k=1}^{n} u_k(x)| < M$ for all $n \in \mathbb{N}$ and all $x \in [a, b]$;
- There is a positive decreasing sequence $\{M_n\}$ such that $|v_n(x)| < M_n$ for all $n \in \mathbb{N}$ and all $x \in [a, b]$, and furthermore $\lim_{n \to \infty} M_n = 0$.

Does it follow that $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ converge uniformly on [a, b]? Justify.

6. $\max(a_n, b_n) < a_n + b_n < 2 \max(a_n, b_n).$

^{4.} f(x) may not be continuous at a, b. Optional: Try to understand why a counter-example is hard to find.
5. a_n = 2 + (-1)ⁿ.