Comments on Homework 3

February 6, 2014

1. Mistakes.

The following are popular mistakes. Try to fully understand why they are wrong.
i. Let $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be a power series. Then its radius of convergence can be calculated as

$$
\begin{equation*}
R^{-1}=\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| . \tag{1}
\end{equation*}
$$

(Make sure you understand why the radius of convergence can only be calculated from the root test.)
ii. Let $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be a power series with radius of convergence 1 . Then the series converges uniformly on ($x_{0}-1, x_{0}+1$).
(Hint: ${ }^{11}$; Make sure you have a counter-example.)
iii. Let $f(x)$ have Taylor expansion $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ at $x=x_{0}$. Let the radius of convergence for $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be denoted R. If $R>0$, then we have

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad \forall x \in\left(x_{0}-R, x_{0}+R\right) \tag{2}
\end{equation*}
$$

(Hint: ${ }^{2}$ This question can only be satisfactorily answered through complex analysis.)
iv. Let the infinite series of functions $\sum_{n=1}^{\infty} u_{n}(x)$ be such that

- Each $u_{n}(x)$ is integrable on $[a, b]$;
- $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$.

Then

$$
\begin{equation*}
\int \sum_{n=1}^{\infty} u_{n}(x) \mathrm{d} x=\sum_{n=1}^{\infty}\left[\int u_{n}(x) \mathrm{d} x\right] . \tag{3}
\end{equation*}
$$

(Hint: ${ }^{3}$ Make sure you understand the difference between $\int_{a}^{b} f(x) \mathrm{d} x$ and $\int f(x) \mathrm{d} x$.)
v. Let $R_{1}=0, R_{2}=\infty$. We define $R_{1} R_{2}=0$.
vi. Assume that

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} u_{n}(x), \quad \forall x \in(a, b) \tag{4}
\end{equation*}
$$

[^0]Further assume that each $u_{n}(x)$ is continuous and $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$. Then

$$
\begin{equation*}
f(a)=\sum_{n=1}^{\infty} u_{n}(a), \quad f(b)=\sum_{n=1}^{\infty} u_{n}(b) . \tag{5}
\end{equation*}
$$

(Hint: ${ }^{4}$)

2. Exercises.

Some related exercises.
Exercise 1. Find a power series such that its radius of convergence R does not equal limsup $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$. (Hint: ${ }^{5}$)
Exercise 2. Let $a_{n}, b_{n}>0$. Prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)^{1 / n}=\max \left(\limsup _{n \rightarrow \infty} a_{n}^{1 / n}, \limsup _{n \rightarrow \infty} b_{n}^{1 / n}\right) \tag{6}
\end{equation*}
$$

How should we change the formula if we drop the conditions $a_{n}, b_{n}>0$? (Hint: ${ }^{6}$)
Exercise 3. Let $E_{1}, E_{2}, \ldots, E_{m} \subseteq \mathbb{R}$. Assume that $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on each $E_{i}, i=1,2$, $3, \ldots, m$. Prove that the series converges uniformly on $\cup_{k=1}^{m} E_{k}$. What if we allow m to be infinite?
Exercise 4. Let $\sum_{n=1}^{\infty} u_{n}(x) v_{n}(x)$ satisfy that

- There is $M>0$ such that $\left|\sum_{k=1}^{n} u_{k}(x)\right|<M$ for all $n \in \mathbb{N}$ and all $x \in[a, b]$;
- There is a positive decreasing sequence $\left\{M_{n}\right\}$ such that $\left|v_{n}(x)\right|<M_{n}$ for all $n \in \mathbb{N}$ and all $x \in[a, b]$, and furthermore $\lim _{n \rightarrow \infty} M_{n}=0$.

Does it follow that $\sum_{n=1}^{\infty} u_{n}(x) v_{n}(x)$ converge uniformly on $[a, b]$? Justify.

[^1]
[^0]: 1. Uniform convergence on $[-a, a]$ for every $0 \leqslant a<1$. But not on $(-1,1)$.
 2. $f(x)=\exp \left[-1 / x^{2}\right]$ for $x \neq 0$ and $f(0)=0$.
 3. The theorem is about definition integral.
[^1]: 4. $f(x)$ may not be continuous at a, b. Optional: Try to understand why a counter-example is hard to find.
 5. $a_{n}=2+(-1)^{n}$.
 6. $\max \left(a_{n}, b_{n}\right)<a_{n}+b_{n}<2 \max \left(a_{n}, b_{n}\right)$.
