Math 314 Fall 2012 Midterm

Oct. 23, 2012 2PM - 3:20pm. Total 60 Pts

NAME:
ID\#:

- Please write clearly and show enough work.

Problem 1. (5 pts) A function $f(x): E \mapsto \mathbb{R}$ is said to be Lipschitz continuous if there is $M \in \mathbb{R}$ such that for every $x, y \in E,|f(x)-f(y)| \leqslant M|x-y|$. Write down the logical statement of " $f(x)$ is not Lipschitz continuous".

Problem 2. (5 pts) Let $f(x): X \mapsto Y$ satisfy: For any $A, B \subseteq X$, if $A \cap B=\varnothing$ then $f(A) \cap f(B)=\varnothing$. Prove that f is one-to-one.

Problem 3. (10 pts) Find the following limits. Justify your answers. (You can use the convergence/divergence of $x_{n}=n^{a}$ without proof)
a) $(3$ pts $) \lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+4 n}-\sqrt{n^{2}-2 n}\right]$.
b) $(3 \mathrm{pts}) \lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$.
c) $(4$ pts $) \lim _{n \longrightarrow \infty} \frac{5 x_{n}}{n^{3}+2 n+1}$ where x_{n} satisfies $\left|x_{n}\right| \leqslant 3 n$ for all $n \in \mathbb{N}$.

Problem 4. (10 pts) Let $A=\left\{x \in \mathbb{R}: e^{x^{2}}>e\right\}, B=\{x \in \mathbb{R}: x>0, \ln x \leqslant 0\}$.
a) (4 pts) Express $A, B, A \cap B, A \cup B$ using intervals.
b) (6 pts) Among the four sets above, which is/are open? Which is/are closed? Justify your answers.

Problem 5. (10 pts) Let $x_{n}=(-1)^{n}-e^{-n}$ and $E=\left\{x_{n}: n \in \mathbb{N}\right\} .(\mathbb{N}=\{1,2,3, \ldots\})$
a) (6 pts) Find $\max E, \sup E, \min E, \inf E$. Justify your answers.
b) (4 pts) Calculate $\limsup _{n \longrightarrow \infty} x_{n}$ and $\liminf _{n \longrightarrow \infty} x_{n}$.

Problem 6. (10 pts) Let $x_{0}=25$ and define x_{n} through

$$
\begin{equation*}
x_{n+1}=\frac{3 x_{n}}{7}-8 . \tag{1}
\end{equation*}
$$

Prove that $\left\{x_{n}\right\}$ converges and find its limit. (You can use the formula $1+r+\cdots+r^{k}=\frac{1-r^{k+1}}{1-r}$ without proof)

Problem 7. (5 pts) Is $f(x)=\left\{\begin{array}{ll}\frac{(\cos x)\left(\sin x^{2}\right)}{x^{2}} & x \neq 0 \\ 1 & x=0\end{array}\right.$ continuous for all $x \in \mathbb{R}$? Justify your answer. (You can use $\lim _{x \longrightarrow 0} \frac{\sin x}{x}=1$ without proof).

Problem 8. (5 pts) Let $f: \mathbb{R} \mapsto \mathbb{R}, g: \mathbb{R} \mapsto \mathbb{R}$ be continuous functions. Assume $f(x)>0$ for all $x \in \mathbb{R}$.
a) ($4 \mathbf{p t s}$) Prove that for any closed interval $[a, b]$ with $a, b \in \mathbb{R}$, there is $\delta_{0}>0$ such that for all $0 \leqslant \delta<\delta_{0}$, $f(x)+\delta g(x)>0$ for all $x \in[a, b]$.
b) ($\mathbf{1} \mathbf{p t)}$ Is the claim still true when $a=-\infty$ or $b=\infty$ (or both)?

