MATH 314 FALL 2012 MIDTERM

Oct. 23, 2012 2PM - 3:20PM. Total 60 Pts

NAME:

ID#:

• Please write clearly and show enough work.

Problem 1. (5 pts) A function $f(x): E \mapsto \mathbb{R}$ is said to be Lipschitz continuous if there is $M \in \mathbb{R}$ such that for every $x, y \in E$, $|f(x) - f(y)| \leq M |x - y|$. Write down the logical statement of "f(x) is not Lipschitz continuous".

Problem 2. (5 pts) Let $f(x): X \mapsto Y$ satisfy: For any $A, B \subseteq X$, if $A \cap B = \emptyset$ then $f(A) \cap f(B) = \emptyset$. Prove that f is one-to-one.

Problem 3. (10 pts) Find the following limits. Justify your answers. (You can use the convergence/divergence of $x_n = n^a$ without proof)

a) (3 pts) $\lim_{n \to \infty} \left[\sqrt{n^2 + 4n} - \sqrt{n^2 - 2n} \right].$

b) (3 pts)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}$$
.

c) (4 pts)
$$\lim_{n \to \infty} \frac{5 x_n}{n^3 + 2 n + 1}$$
 where x_n satisfies $|x_n| \leq 3 n$ for all $n \in \mathbb{N}$.

Problem 4. (10 pts) Let $A = \{x \in \mathbb{R} : e^{x^2} > e\}, B = \{x \in \mathbb{R} : x > 0, \ln x \leq 0\}.$

a) (4 pts) Express $A, B, A \cap B, A \cup B$ using intervals.

b) (6 pts) Among the four sets above, which is/are open? Which is/are closed? Justify your answers.

Problem 5. (10 pts) Let $x_n = (-1)^n - e^{-n}$ and $E = \{x_n : n \in \mathbb{N}\}$. $(\mathbb{N} = \{1, 2, 3, ...\})$

- a) (6 pts) Find $\max E$, $\sup E$, $\min E$, $\inf E$. Justify your answers.
- b) (4 pts) Calculate $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} x_n$.

Problem 6. (10 pts) Let $x_0 = 25$ and define x_n through

$$x_{n+1} = \frac{3x_n}{7} - 8. \tag{1}$$

Prove that $\{x_n\}$ converges and find its limit. (You can use the formula $1 + r + \dots + r^k = \frac{1 - r^{k+1}}{1 - r}$ without proof)

Problem 7. (5 pts) Is $f(x) = \begin{cases} \frac{(\cos x)(\sin x^2)}{x^2} & x \neq 0\\ 1 & x = 0 \end{cases}$ continuous for all $x \in \mathbb{R}$? Justify your answer. (You can use $\lim_{x \to 0} \frac{\sin x}{x} = 1$ without proof).

Problem 8. (5 pts) Let $f: \mathbb{R} \mapsto \mathbb{R}, g: \mathbb{R} \mapsto \mathbb{R}$ be continuous functions. Assume f(x) > 0 for all $x \in \mathbb{R}$.

- a) (4 pts) Prove that for any closed interval [a, b] with $a, b \in \mathbb{R}$, there is $\delta_0 > 0$ such that for all $0 \leq \delta < \delta_0$, $f(x) + \delta g(x) > 0$ for all $x \in [a, b]$.
- b) (1 pt) Is the claim still true when $a = -\infty$ or $b = \infty$ (or both)?