Math 314 Fall 2012 Final Exam

DEc. 10, 2012 2PM - 4PM, MEC 2-3

NAME:
ID\#:

- There are 11 Problems, total 100 points.
- Please justify all your answers:
- For calculation problems, "justify" means show enough steps.
- Last 3 pages (pages $13-15$) are blank. Detach one or more if you need scrap paper.

$$
\mathcal{G O O D} \quad \mathcal{L U C K}!!
$$

Problem 1. (10 pts) Let $f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{e^{x}-1-x} & x \neq 0 \\ c & x=0\end{array}\right.$ for some $c \in \mathbb{R}$.
a) ($4 \mathbf{p t s})$ Prove that the only solution to $e^{x}-1-x=0$ is $x=0$.
b) ($6 \mathbf{p t s}$) For what value of c is $f(x)$ continuous at all $x \in \mathbb{R}$?

Problem 2. (10 pts) Let $f(x):\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \mapsto \mathbb{R}$ be defined by $f(x)=2 \tan x-x$.
a) (5 pts) Prove that $f(x)$ is strictly increasing.
b) (5 pts) Let g be the inverse function of f. Calculate $g^{\prime}(0)$.

Problem 3. (10 pts) Let $f(x)=\exp [\cos x]$.
a) (6 pts$)$ Calculate $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$.
b) (4 pts) Obtain Taylor polynomial to degree 2 with Lagrange form of remainder at $x_{0}=0$.

Problem 4. (10 pts)
a) (5 pts) Calculate $\int_{0}^{1} x^{-1 / 3} e^{-x^{1 / 3}} \mathrm{~d} x$.
b) (5 pts) Prove that $f(x)=\frac{1}{(1+x)^{3}}$ is improperly integrable on $(0, \infty)$ and find $\int_{0}^{\infty} \frac{\mathrm{d} x}{(1+x)^{3}}$.

Problem 5. (10 pts) Prove that $\sum_{n=1}^{\infty} n^{2} x^{n}$ converges when $|x|<1$ and diverges when $|x| \geqslant 1$.

Problem 6. (10 pts) Let $a>1$. Prove that $\lim _{n \rightarrow \infty}\left[(n+4)^{a}-n^{a}\right]=\infty$. You can use $\left(x^{a}\right)^{\prime}=a x^{a-1}$ and the limit of x^{a} without justification.

Problem 7. (10 pts) Let $g(x)$ be integrable on $[a, b]$ and define $F(x)=\int_{a}^{x} g(t) \mathrm{d} t$.
a) (5 pts) Prove that if $g(x)>0$ and is continuous on $[a, b]$, then $\exists \delta>0$ such that $F^{\prime}(x) \geqslant \delta$ for all $x \in(a, b)$.
b) (5 pts) Prove that if $g(x)$ is increasing on (a, b) and is not continuous at $x_{0} \in(a, b)$, then $F(x)$ is not differentiable at x_{0}.

Problem 8. (10 pts) Let $\varphi(x)=\int_{0}^{x} \ln (\cos t) \mathrm{d} t$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
a) (5 pts) Prove that $\varphi(x)=x \ln 2+2 \varphi\left(\frac{\pi}{4}+\frac{x}{2}\right)-2 \varphi\left(\frac{\pi}{4}-\frac{x}{2}\right)$.
b) (5 pts) Calculate $\int_{0}^{\pi / 2} \ln (\cos t) \mathrm{d} t$. Note that you can still solve b) even if you don't know how to prove a).

Problem 9. (10 pts) Let $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ diverge. Prove
a) (5 pts) $\sum_{n=1}^{\infty} \frac{a_{n}}{1+n^{2} a_{n}}$ converges.
b) $(5 \mathrm{pts}) \sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ diverges.

Problem 10. (5 pts) Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be a bounded function, that is there is $M>0$ such that $|f(x)| \leqslant M$ for all $x \in \mathbb{R}$. Prove that if $f^{\prime \prime}(x) \geqslant 0$ for all $x \in \mathbb{R}$ then f is constant.

Problem 11. (5 pts) Let $f(x):[a, b] \mapsto \mathbb{R}$ with $a, b \in \mathbb{R}$. For any partition $P=\left\{x_{0}=a, x_{1}, \ldots, x_{n}=b\right\}$, we define $V_{a}^{b}(f, P)=\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|$ and then $V_{a}^{b}(f):=\sup _{P} V_{a}^{b}(f, P)$. If $V_{a}^{b}(f)$ is finite we say $f(x)$ is BV.
a) (2 pt) Prove that if $f(x)$ is BV then it is integrable.
b) ($1 \mathbf{p t}$) Give an example of a BV function that is not continuous.
c) (1 pt) Assume that $f^{\prime}(x)$ exists and $\left|f^{\prime}(x)\right|$ is integrable on $[a, b]$. Prove that $V_{a}^{b}(f) \leqslant \int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x$.
d) (1 pt) Prove that with the assumptions in c), we in fact have $V_{a}^{b}(f)=\int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x$.

