MATH 314 FALL 2012 FINAL EXAM

DEC. 10, 2012 2PM - 4PM, MEC 2-3

NAME:

ID#:

- There are 11 Problems, total 100 points.
- Please **justify** all your answers:
 - For calculation problems, "justify" means show enough steps.
- Last 3 pages (pages 13 15) are blank. Detach one or more if you need scrap paper.

GOOD LUCK!!

Problem 1. (10 pts) Let $f(x) = \begin{cases} \frac{1 - \cos x}{e^x - 1 - x} & x \neq 0 \\ c & x = 0 \end{cases}$ for some $c \in \mathbb{R}$.

- a) (4 pts) Prove that the only solution to $e^x 1 x = 0$ is x = 0.
- b) (6 pts) For what value of c is f(x) continuous at all $x \in \mathbb{R}$?

Problem 2. (10 pts) Let $f(x): \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \mapsto \mathbb{R}$ be defined by $f(x) = 2 \tan x - x$.

- a) (5 pts) Prove that f(x) is strictly increasing.
- b) (5 pts) Let g be the inverse function of f. Calculate g'(0).

Problem 3. (10 pts) Let $f(x) = \exp[\cos x]$.

- a) (6 pts) Calculate f'(x), f''(x), f'''(x).
- b) (4 pts) Obtain Taylor polynomial to degree 2 with Lagrange form of remainder at $x_0 = 0$.

Problem 4. (10 pts)

a) (5 pts) Calculate
$$\int_0^1 x^{-1/3} e^{-x^{1/3}} dx$$
.
b) (5 pts) Prove that $f(x) = \frac{1}{(1+x)^3}$ is improperly integrable on $(0,\infty)$ and find $\int_0^\infty \frac{dx}{(1+x)^3}$.

Problem 5. (10 pts) Prove that $\sum_{n=1}^{\infty} n^2 x^n$ converges when |x| < 1 and diverges when $|x| \ge 1$.

Problem 6. (10 pts) Let a > 1. Prove that $\lim_{n \to \infty} [(n+4)^a - n^a] = \infty$. You can use $(x^a)' = a x^{a-1}$ and the limit of x^a without justification.

Problem 7. (10 pts) Let g(x) be integrable on [a, b] and define $F(x) = \int_a^x g(t) dt$.

- a) (5 pts) Prove that if g(x) > 0 and is continuous on [a, b], then $\exists \delta > 0$ such that $F'(x) \ge \delta$ for all $x \in (a, b)$.
- b) (5 pts) Prove that if g(x) is increasing on (a, b) and is not continuous at $x_0 \in (a, b)$, then F(x) is not differentiable at x_0 .

Problem 8. (10 pts) Let $\varphi(x) = \int_0^x \ln(\cos t) dt$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. a) (5 pts) Prove that $\varphi(x) = x \ln 2 + 2 \varphi\left(\frac{\pi}{4} + \frac{x}{2}\right) - 2 \varphi\left(\frac{\pi}{4} - \frac{x}{2}\right)$.

b) (5 pts) Calculate $\int_0^{\pi/2} \ln(\cos t) dt$. Note that you can still solve b) even if you don't know how to prove a).

Problem 9. (10 pts) Let $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ diverge. Prove

a) (5 pts)
$$\sum_{n=1}^{\infty} \frac{a_n}{1+n^2 a_n}$$
 converges.
b) (5 pts) $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ diverges.

Problem 10. (5 pts) Let $f(x): \mathbb{R} \to \mathbb{R}$ be a bounded function, that is there is M > 0 such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$. Prove that if $f''(x) \ge 0$ for all $x \in \mathbb{R}$ then f is constant.

Problem 11. (5 pts) Let $f(x): [a,b] \mapsto \mathbb{R}$ with $a, b \in \mathbb{R}$. For any partition $P = \{x_0 = a, x_1, \dots, x_n = b\}$, we define $V_a^b(f, P) = \sum_{i=1}^n |f(x_i) - f(x_{i-1})|$ and then $V_a^b(f) := \sup_P V_a^b(f, P)$. If $V_a^b(f)$ is finite we say f(x) is BV.

- a) (2 pt) Prove that if f(x) is BV then it is integrable.
- b) (1 pt) Give an example of a BV function that is not continuous.
- c) (1 pt) Assume that f'(x) exists and |f'(x)| is integrable on [a, b]. Prove that $V_a^b(f) \leq \int_a^b |f'(x)| dx$.
- d) (1 pt) Prove that with the assumptions in c), we in fact have $V_a^b(f) = \int_a^b |f'(x)| dx$.