Math 314 Fall 2013 Homework 9 Solutions

Due Wednesday Nov. 20 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $a>0$. Use Mean Value Theorem to prove

$$
\begin{equation*}
\sqrt{2+a}-\sqrt{1+a}<\sqrt{1+a}-\sqrt{a} \tag{1}
\end{equation*}
$$

You can use $\left(x^{a}\right)^{\prime}=a x^{a-1}$ without proof.
Solution. Consider the function $f(x)=\sqrt{x}$. By mean value theorem we have

$$
\begin{equation*}
f(x)-f(y)=f^{\prime}(\xi)(x-y)=\frac{1}{2 \sqrt{\xi}}(x-y) \tag{2}
\end{equation*}
$$

Now setting x, y to be $2+a, 1+a$, and $1+a, a$ respectively, we have

$$
\begin{equation*}
\sqrt{2+a}-\sqrt{1+a}=\frac{1}{2 \sqrt{\xi_{1}}} ; \quad \sqrt{1+a}-\sqrt{a}=\frac{1}{2 \sqrt{\xi_{2}}} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi_{1} \in(2+a, 1+a), \quad \xi_{2} \in(1+a, a) \tag{4}
\end{equation*}
$$

Thus $\xi_{1}>\xi_{2}$ and consequently

$$
\begin{equation*}
\sqrt{2+a}-\sqrt{1+a}<\sqrt{1+a}-\sqrt{a} \tag{5}
\end{equation*}
$$

Question 2. In the proof of L'Hospital's rule, we arrive at: For every $x \neq x_{0}$, there is c between x, x_{0} with $c \neq x_{0}, x$, such that

Assume that

$$
\begin{equation*}
\frac{f(x)}{g(x)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{6}
\end{equation*}
$$

Prove by definition of limit that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R} \tag{7}
\end{equation*}
$$

Prove by definition of limit that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=L \tag{8}
\end{equation*}
$$

Proof. For any $\varepsilon>0$, since $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ there is $\delta_{1}>0$ such that for all $0<\left|x-x_{0}\right|<\delta_{1}$,

$$
\begin{equation*}
\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\varepsilon \tag{9}
\end{equation*}
$$

Now set $\delta=\delta_{1}$. For any $x \neq x_{0}$ such that $0<\left|x-x_{0}\right|<\delta$, since c is between x_{0} and x and furthermore $c \neq x_{0}, c \neq x$, we have

$$
\begin{equation*}
0<\left|c-x_{0}\right|<\left|x-x_{0}\right|<\delta=\delta_{1} \tag{10}
\end{equation*}
$$

Thus $0<\left|c-x_{0}\right|<\delta_{1}$ and consequently

$$
\begin{equation*}
\left|\frac{f(x)}{g(x)}-L\right|=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}-L\right|<\varepsilon \tag{11}
\end{equation*}
$$

By definition $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=L$.
Question 3. Calculate

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x} \tag{12}
\end{equation*}
$$

using L'Hospital's rule. You should explicitly check that the four conditions for the application of the rule are satisfied. In particular, make your (a, b) explicit.

Solution. Set $f(x)=\sin x, g(x)=x \cos x .(a, b)=\left(-\frac{\pi}{6}, \frac{\pi}{6}\right) . x_{0}=0$.

1. $f(x), g(x)$ are differentiable on $(a, b)-\left\{x_{0}\right\}$.

Since $x, \cos x$ are differentiable at every x, so is their product $x \cos x$. Furthermore $\sin x$ is differentiable at every x. Therefore this condition is satisfied.
2. $\lim _{x \longrightarrow x_{0}} f(x)=\lim _{x \longrightarrow x_{0}} g(x)=0$.

Since $x \cos x$ and $\sin x$ are continuous at 0 , we have

$$
\begin{equation*}
\lim _{x \rightarrow 0}(x \cos x)=0 \cdot \cos 0=0 ; \quad \lim _{x \rightarrow 0} \sin x=\sin 0=0 . \tag{13}
\end{equation*}
$$

3. $\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.

Since $\lim _{x \rightarrow 0}[\cos x-x \sin x]=1 \neq 0$, we have

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\cos x}{\cos x-x \sin x}=\frac{1}{1-0}=1 . \tag{14}
\end{equation*}
$$

4. $g^{\prime}(x) \neq 0$ for $x \in(a, b)-\left\{x_{0}\right\}$.

For $x \in\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)-\{0\}$, we have

$$
\begin{equation*}
\cos x>\frac{\sqrt{3}}{2}>\frac{1}{2}, \quad|\sin x|<\frac{1}{2} \Longrightarrow|x \cos x|<\frac{\pi}{12}<\frac{1}{2} \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\cos x-x \sin x>0 \tag{16}
\end{equation*}
$$

for all $x \in\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)-\{0\}$.
Thus L'Hospital's rule gives

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x}=\lim _{x \rightarrow 0} \frac{\cos x}{\cos x-x \sin x}=1 . \tag{17}
\end{equation*}
$$

Question 4. Calculate

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x} \tag{18}
\end{equation*}
$$

using L'Hospital's rule. (Note for this problem you do not need to check the conditions explicitly)
Solution. We have

$$
\begin{align*}
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x} & =\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{1-\cos x} \\
& =\lim _{x \longrightarrow 0} \frac{e^{x}-e^{-x}}{\sin x} \\
& =\lim _{x \longrightarrow 0} \frac{e^{x}+e^{-x}}{\cos x}=2 . \tag{19}
\end{align*}
$$

Question 5. Prove the following "Naive L'Hospital's rule": Let $x_{0} \in(a, b) \subseteq \mathbb{R}$. Let f, g be defined on (a, b) and satisfy

1. $f\left(x_{0}\right)=g\left(x_{0}\right)=0$;
2. f, g are differentiable at x_{0};
3. $g^{\prime}\left(x_{0}\right) \neq 0$.

Then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{20}
\end{equation*}
$$

Solution.

Since f, g are differentiable at x_{0} we have

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right), \quad \lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}=g^{\prime}\left(x_{0}\right) \tag{21}
\end{equation*}
$$

Since $g^{\prime}\left(x_{0}\right) \neq 0$ we have

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}}{\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{22}
\end{equation*}
$$

Finally using the fact that $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ we obtain

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{23}
\end{equation*}
$$

as desired.

Question 6. Let $f(x)=\sin 2 x$.
a) Calculate its Taylor expansion to degree 3 at $x_{0}=0$ with Lagrange form of remainder;
b) Let $P_{3}(x)$ be the Taylor polynomial obtained above. Prove that $\left|\sin 2 x-P_{3}(x)\right|<\frac{1}{120}$ for all $-\frac{1}{2}<x<\frac{1}{2}$.

Solution.

a) We have $f^{\prime}(x)=2 \cos 2 x, f^{\prime \prime}=-4 \sin 2 x, f^{\prime \prime \prime}=-8 \cos 2 x, f^{(4)}(x)=16 \sin 2 x$. Therefore the Taylor polynomial of degree 3 at $x_{0}=0$ with Lagrange remainder is

$$
\begin{equation*}
f(x)=2 x-\frac{4}{3} x^{3}+\frac{2 \sin (2 \xi)}{3} x^{4} \tag{24}
\end{equation*}
$$

where ξ lies between 0 and x.
b) We have $P_{3}(x)=2 x-\frac{4}{3} x^{3}$. Noticing that $f^{(4)}(0)=0$, we have in fact $P_{3}(x)=P_{4}(x)$ and

$$
\begin{equation*}
f(x)=2 x-\frac{4}{3} x^{3}+\frac{4 \cos (2 \xi)}{15} x^{5} \tag{25}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|\sin 2 x-P_{3}(x)\right| \leqslant \frac{4}{15}|x|^{5}<\frac{1}{120} \tag{26}
\end{equation*}
$$

