Math 314 Fall 2013 Homework 9

Due Wednesday Nov. 20 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $a>0$. Use Mean Value Theorem to prove

$$
\begin{equation*}
\sqrt{2+a}-\sqrt{1+a}<\sqrt{1+a}-\sqrt{a} . \tag{1}
\end{equation*}
$$

You can use $\left(x^{a}\right)^{\prime}=a x^{a-1}$ without proof.
Question 2. In the proof of L'Hospital's rule, we arrive at: For every $x \neq x_{0}$, there is c between x, x_{0} with $c \neq x_{0}, x$, such that

$$
\begin{equation*}
\frac{f(x)}{g(x)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \tag{2}
\end{equation*}
$$

Assume that

Prove by definition of limit that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=L . \tag{4}
\end{equation*}
$$

Question 3. Calculate

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x} \tag{5}
\end{equation*}
$$

using L'Hospital's rule. You should explicitly check that the four conditions for the application of the rule are satisfied. In particular, make your (a, b) explicit.

Question 4. Calculate

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x} \tag{6}
\end{equation*}
$$

using L'Hospital's rule. (Note for this problem you do not need to check the conditions explicitly)
Question 5. Prove the following "Naive L'Hospital's rule": Let $x_{0} \in(a, b) \subseteq \mathbb{R}$. Let f, g be defined on (a, b) and satisfy

1. $f\left(x_{0}\right)=g\left(x_{0}\right)=0$;
2. f, g are differentiable at x_{0};
3. $g^{\prime}\left(x_{0}\right) \neq 0$.

Then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{7}
\end{equation*}
$$

Question 6. Let $f(x)=\sin 2 x$.
a) Calculate its Taylor expansion to degree 3 at $x_{0}=0$ with Lagrange form of remainder;
b) Let $P_{3}(x)$ be the Taylor polynomial obtained above. Prove that $\left|\sin 2 x-P_{3}(x)\right|<\frac{1}{120}$ for all $-\frac{1}{2}<x<\frac{1}{2}$.

