Math 314 Fall 2013 Homework 8 Solutions

Due Wednesday Nov. 13 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $f(x)=\exp [x \ln x]$. Calculate $f^{\prime}(x)$.
Solution. We have

$$
\begin{align*}
f^{\prime}(x) & =\exp x \ln x^{\prime} \\
& =\exp [x \ln x]\left(x^{\prime} \ln x+x(\ln x)^{\prime}\right) \\
& =\exp [x \ln x](\ln x+1) \tag{1}
\end{align*}
$$

Question 2. Let $f(x)=\arccos x$. Calculate $f^{\prime}(x)$.
Solution. We have

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{(\cos y)^{\prime}}=-\frac{1}{\sin y} \tag{2}
\end{equation*}
$$

Here $y=\arccos x \in[0, \pi)$. Therefore $\sin y \geqslant 0$ and

$$
\begin{equation*}
\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}} \tag{3}
\end{equation*}
$$

So

$$
\begin{equation*}
f_{3}^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}} \tag{4}
\end{equation*}
$$

Question 3. Is $x_{0}=\frac{1}{20 \pi}$ a local maximizer for $f(x)=\left(1+(\sin x)^{4}\right) \cos \left(\frac{1}{x}\right)$? Justify your answer.
Solution. We calculate

This gives

$$
\begin{equation*}
f^{\prime}(x)=4(\sin x)^{3} \cos x \cos \left(\frac{1}{x}\right)+\frac{1+(\sin x)^{4}}{x^{2}} \sin \left(\frac{1}{x}\right) . \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=4\left(\sin \left(\frac{1}{20 \pi}\right)\right)^{3} \cos \left(\frac{1}{20 \pi}\right) \neq 0 \tag{6}
\end{equation*}
$$

so x_{0} cannot be a local maximizer for $f(x)$.
Question 4. Prove Cauchy's Mean Value Theorem.
Solution. Take $h(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)} g(x)$. Since f, g are continuous on $[a, b]$ and differentiable on (a, b), so is $h(x)$. Apply Mean Value Theorem to h we have $\xi \in(a, b)$ such that

$$
\begin{equation*}
h^{\prime}(\xi)=\frac{h(b)-h(a)}{b-a} \tag{7}
\end{equation*}
$$

Since

$$
\begin{equation*}
h^{\prime}(\xi)=f^{\prime}(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(\xi) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
h(b)-h(a)=0 \tag{9}
\end{equation*}
$$

we see that

$$
\begin{equation*}
f^{\prime}(\xi)=\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(\xi) \Longrightarrow \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} \tag{10}
\end{equation*}
$$

Question 5. Let $f(x)=e^{x}-1-\sin x$. Prove that $f(x) \geqslant 0$ for all $x \geqslant 0$.
Solution. Since $f(0)=0$ it suffices to prove $f(x)$ is increasing.
As f is differentiable, we calculate

$$
\begin{equation*}
f^{\prime}(x)=e^{x}-\cos x \geqslant 0 \tag{11}
\end{equation*}
$$

for all $x>0$. Therefore f is increasing and we have

$$
\begin{equation*}
\forall x \geqslant 0, \quad f(x) \geqslant f(0)=0 \tag{12}
\end{equation*}
$$

Question 6. Prove

$$
\begin{equation*}
\forall x \in(-1 / 2,1 / 2), \quad 3 \arccos x-\arccos \left(3 x-4 x^{3}\right)=\pi \tag{13}
\end{equation*}
$$

You can use the result from Question 2.
Solution. Let $h(x)=3 \arccos x-\arccos \left(3 x-4 x^{3}\right)$. Then we show

- $\quad h^{\prime}(x)=0$.

$$
\begin{align*}
h^{\prime}(x) & =-\frac{3}{\sqrt{1-x^{2}}}+\frac{3-12 x^{2}}{\sqrt{1-\left(3 x-4 x^{3}\right)^{2}}} \\
& =-\frac{3}{\sqrt{1-x^{2}}}+\frac{3\left(1-4 x^{2}\right)}{\sqrt{\left(1-3 x+4 x^{3}\right)\left(1+3 x-4 x^{3}\right)}} \\
& =-\frac{3}{\sqrt{1-x^{2}}}+\frac{3\left(1-4 x^{2}\right)}{\sqrt{(1+x)(1-2 x)^{2}(1-x)(1+2 x)^{2}}} \\
& =-\frac{3}{\sqrt{1-x^{2}}}+\frac{3\left(1-4 x^{2}\right)}{\sqrt{\left(1-x^{2}\right)} \sqrt{\left(1-4 x^{2}\right)^{2}}} \\
& =-\frac{3}{\sqrt{1-x^{2}}}+\frac{3}{\sqrt{1-x^{2}}}=0 . \tag{14}
\end{align*}
$$

Note that the cancellation of $\left(1-4 x^{2}\right)$ is only correct when $|x|<1 / 2 \Longrightarrow\left(1-4 x^{2}\right)>0$.

- $\quad h(0)=\pi$.

We have $\arccos 0=\frac{\pi}{2}$ therefore $h(0)=\frac{3 \pi}{2}-\frac{\pi}{2}=\pi$.
Remark. Clearly the above result can be extended to $x=1 / 2,-1 / 2$ through direct calculation.

