Math 314 Fall 2013 Homework 7 Solutions

Due Wednesday Nov. 6 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $g(x)$ be continuous at $x_{0}=0$. Prove that $f(x)=\left\{\begin{array}{ll}g(x) \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is continuous at $x_{0}=0$ if and only if $g(0)=0$.

Solution.

1. "If". $g(0)=0$ then $f(x)$ is continuous at $x_{0}=0$.

Take any $\varepsilon>0$. Since $g(x)$ is continuous at $x_{0}=0$, there is $\delta>0$ such that for all $|x-0|<\delta$, $|g(x)-0|<\varepsilon$.

For these same $|x-0|<\delta$, we have

$$
\begin{equation*}
|f(x)-f(0)|=\left|g(x) \sin \frac{1}{x}\right| \leqslant|g(x)|<\varepsilon . \tag{1}
\end{equation*}
$$

Therefore $f(x)$ is continuous at $x_{0}=0$.
2. "Only if". $g(0) \neq 0$ then $f(x)$ is not continuous at $x_{0}=0$.

We show that in this case $\lim _{x \longrightarrow 0} f(x)$ does not exist, thus $f(x)$ cannot be continuous at 0 . Take $x_{n}=\frac{1}{n \pi}, y_{n}=\frac{1}{2 n \pi+\pi / 2}$ for $n \in \mathbb{N}$, we have $x_{n}, y_{n} \neq 0, x_{n} \rightarrow 0, y_{n} \rightarrow 0$,

$$
\begin{equation*}
f\left(x_{n}\right)=0 \longrightarrow 0, \quad f\left(y_{n}\right)=g\left(y_{n}\right) \longrightarrow g(0) \neq 0 \tag{2}
\end{equation*}
$$

Thus we have found two subsequences with different limits, and therefore $\lim _{x \longrightarrow 0} f(x)$ does not exist.

Remark. (Other proofs for the "only if" part)

- Method 1. Assume the contrary, that is $\lim _{x \rightarrow 0} f(x)=0$. Then since $\lim _{x \rightarrow 0} g(x)=g(0) \neq 0$, we have

$$
\begin{equation*}
\lim _{x \rightarrow 0} \sin \frac{1}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{0}{g(0)}=0 \tag{3}
\end{equation*}
$$

which contradicts the fact that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.

- Method 2. Assume $f(x)$ is continuous at 0 , then for any $x_{n} \longrightarrow 0, x_{n} \neq 0, f\left(x_{n}\right) \longrightarrow f(0)=0$. Take $x_{n}=\frac{1}{2 n \pi+\pi / 2}$. Then $f\left(x_{n}\right)=g\left(x_{n}\right)$. We conclude $g\left(x_{n}\right) \longrightarrow 0$. But g is continuous at $x=0$, so $g(0)=\lim _{x \longrightarrow 0} g(x)=0$.

Question 2. Prove by definition of limit that $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists and is finite if and only if $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exists and is finite.

Solution.

- "If".

Assuming $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exists and is finite, we prove $\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists and is finite.

Denote $L:=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.
For any $\varepsilon>0$, there is $\delta_{1}>0$ such that for any $0<|h|<\delta_{1}$,

$$
\begin{equation*}
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-L\right|<\varepsilon . \tag{4}
\end{equation*}
$$

Now take $\delta=\delta_{1}$. For any $0<\left|x-x_{0}\right|<\delta=\delta_{1}$, we have

$$
\begin{equation*}
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-L\right|=\left|\frac{f\left(x_{0}+\left(x-x_{0}\right)\right)-f\left(x_{0}\right)}{x-x_{0}}-L\right|<\varepsilon \tag{5}
\end{equation*}
$$

and therefore $\lim _{h \rightarrow 0} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=L$ is finite.

- "Only if".

Assuming $\lim _{h \rightarrow 0} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists and is finite, we prove $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exists and is finite.
Denote $L:=\operatorname{im}_{h \rightarrow 0} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$.
For any $\varepsilon>0$ there is $\delta_{2}>0$ such that for any $0<\left|x-x_{0}\right|<\delta_{2}$,

$$
\begin{equation*}
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-L\right|<\varepsilon \tag{6}
\end{equation*}
$$

Now set $\delta=\delta_{2}$. For any h satisfying $0<|h|<\delta$, we have $0<\left|\left(x_{0}+h\right)-x_{0}\right|<\delta=\delta_{2}$. Therefore

$$
\begin{equation*}
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-L\right|=\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{\left(x_{0}+h\right)-x_{0}}-L\right|<\varepsilon \tag{7}
\end{equation*}
$$

Therefore $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=L$.
Question 3. Prove that $f(x)=x^{3}$ is differentiable at every $x_{0} \in \mathbb{R}$ by definition.
Solution. We have

$$
\begin{equation*}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\frac{x^{3}-x_{0}^{3}}{x-x_{0}}=x^{2}+x_{0} x+x_{0}^{2} . \tag{8}
\end{equation*}
$$

This is a polynomial of x since x_{0} is constant. Therefore

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left[x^{2}+x_{0} x+x_{0}^{2}\right]=x_{0}^{2}+x_{0}^{2}+x_{0}^{2}=3 x_{0}^{2} \tag{9}
\end{equation*}
$$

So $f(x)$ is differentiable at x_{0}.
Question 4. Given $x^{\prime}=1$. Use mathematical induction to prove

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad\left(x^{n}\right)^{\prime}=n x^{n-1} \tag{10}
\end{equation*}
$$

Solution. Let $P(n)$ be the statement: $\left(x^{n}\right)^{\prime}=n x^{n-1}$.

- Base is already given.
- $P(n) \Longrightarrow P(n+1)$. Assume $\left(x^{n}\right)^{\prime}=n x^{n-1}$. By Leibniz rule we have

$$
\begin{equation*}
\left(x^{n+1}\right)^{\prime}=\left(x^{n} \cdot x\right)^{\prime}=\left(x^{n}\right)^{\prime} \cdot x+x^{n} \cdot x^{\prime}=n x^{n-1} \cdot x+x^{n}=(n+1) x^{n} \tag{11}
\end{equation*}
$$

Thus ends the proof.
Question 5. Let $f(x)$ be differentiable at $x_{0} \in \mathbb{R}$. Prove that the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h} \tag{12}
\end{equation*}
$$

exists and equals $f^{\prime}\left(x_{0}\right)$.
Solution. As $f(x)$ is differentiable at $x_{0} \in \mathbb{R}$, there is $\delta>0$ such that for all $0<\left|x-x_{0}\right|<\delta$,

$$
\begin{equation*}
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f^{\prime}\left(x_{0}\right)\right|<\varepsilon . \tag{13}
\end{equation*}
$$

Now for all $0<|h|<\delta$, set $y:=x_{0}+h, z=x_{0}-h$. Then we have

$$
\begin{equation*}
0<\left|y-x_{0}\right|<\delta, \quad 0<\left|z-x_{0}\right|<\delta \tag{14}
\end{equation*}
$$

This gives through triangle inequality:

$$
\begin{align*}
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}-f^{\prime}\left(x_{0}\right)\right| & =\left|\frac{1}{2}\left(\frac{f(y)-f\left(x_{0}\right)}{y-x_{0}}+\frac{f(z)-f\left(x_{0}\right)}{z-x_{0}}\right)-f^{\prime}\left(x_{0}\right)\right| \\
& =\frac{1}{2}\left|\left(\frac{f(y)-f\left(x_{0}\right)}{y-x_{0}}-f^{\prime}\left(x_{0}\right)\right)+\left(\frac{f(z)-f\left(x_{0}\right)}{z-x_{0}}-f^{\prime}\left(x_{0}\right)\right)\right| \\
& \leqslant \frac{1}{2}\left[\left|\frac{f(y)-f\left(x_{0}\right)}{y-x_{0}}-f^{\prime}\left(x_{0}\right)\right|+\left|\frac{f(z)-f\left(x_{0}\right)}{z-x_{0}}-f^{\prime}\left(x_{0}\right)\right|\right] \\
& <\frac{1}{2}(\varepsilon+\varepsilon)=\varepsilon . \tag{15}
\end{align*}
$$

Thus ends the proof.
Remark. Since "by definition" is not required, it is also OK to prove through:
Since f is differentiable at x_{0},

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right) \tag{16}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{f\left(x_{0}-h\right)-f\left(x_{0}\right)}{-h}=f^{\prime}\left(x_{0}\right) . \tag{17}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left[\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}+\frac{f\left(x_{0}-h\right)-f\left(x_{0}\right)}{-h}\right]=2 f^{\prime}\left(x_{0}\right) . \tag{18}
\end{equation*}
$$

Simplify the LHS we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}=f^{\prime}\left(x_{0}\right) \tag{19}
\end{equation*}
$$

Question 6. Let

$$
\begin{equation*}
f(x)=\frac{\exp \left(x^{3}\right)}{\cos x} \tag{20}
\end{equation*}
$$

Prove that $f(x)$ is differentiable at 0 and calculate $f^{\prime}(0)$.

Solution.

Since x^{3} and e^{x} are differentiable at every $x \in \mathbb{R}$, so is the composite function $\exp \left(x^{3}\right)$. Furthermore $\cos x$ is differentiable at every $x \in \mathbb{R}$ and $\cos 0=1 \neq 0$. So $f(x)$ is differentiable at $x=0$.

We calculate

$$
\begin{align*}
f^{\prime}(x) & =\frac{\left[\exp \left(x^{3}\right)\right]^{\prime} \cos x-\exp \left(x^{3}\right)(\cos x)^{\prime}}{(\cos x)^{2}} \\
& =\frac{\exp \left(x^{3}\right)\left(x^{3}\right)^{\prime} \cos x+\exp \left(x^{3}\right) \sin x}{(\cos x)^{2}} \\
& =\frac{3 x^{2} \exp \left(x^{3}\right) \cos x+\exp \left(x^{3}\right) \sin x}{(\cos x)^{2}} \tag{21}
\end{align*}
$$

Setting $x=0$ we have $f^{\prime}(0)=0$.

