Math 314 Fall 2013 Homework 7 Solutions

DUE WEDNESDAY NOV. 6 5PM IN ASSIGNMENT BOX (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points. •
- Please justify all your answers through proof or counterexample. •

Question 1. Let g(x) be continuous at $x_0 = 0$. Prove that $f(x) = \begin{cases} g(x) \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ is continuous at $x_0 = 0$ if and only if q(0) = 0.

Solution.

- 1. "If". g(0) = 0 then f(x) is continuous at $x_0 = 0$.
 - Take any $\varepsilon > 0$. Since g(x) is continuous at $x_0 = 0$, there is $\delta > 0$ such that for all $|x 0| < \delta$, $|g(x) - 0| < \varepsilon.$

For these same $|x-0| < \delta$, we have

$$|f(x) - f(0)| = \left|g(x)\sin\frac{1}{x}\right| \le |g(x)| < \varepsilon.$$

$$\tag{1}$$

Therefore f(x) is continuous at $x_0 = 0$.

2. "Only if". $g(0) \neq 0$ then f(x) is not continuous at $x_0 = 0$.

We show that in this case $\lim_{x \to 0} f(x)$ does not exist, thus f(x) cannot be continuous at 0. Take $x_n = \frac{1}{n\pi}, y_n = \frac{1}{2n\pi + \pi/2}$ for $n \in \mathbb{N}$, we have $x_n, y_n \neq 0, x_n \to 0, y_n \to 0$,

$$f(x_n) = 0 \longrightarrow 0, \qquad f(y_n) = g(y_n) \longrightarrow g(0) \neq 0.$$
 (2)

Thus we have found two subsequences with different limits, and therefore $\lim_{x \to 0} f(x)$ does not exist.

Remark. (Other proofs for the "only if" part)

Method 1. Assume the contrary, that is $\lim_{x\to 0} f(x) = 0$. Then since $\lim_{x\to 0} g(x) = g(0) \neq 0$, we have •

$$\lim_{x \to 0} \sin \frac{1}{x} = \lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{0}{g(0)} = 0$$
(3)

which contradicts the fact that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.

Method 2. Assume f(x) is continuous at 0, then for any $x_n \longrightarrow 0$, $x_n \neq 0$, $f(x_n) \longrightarrow f(0) = 0$. Take $x_n = \frac{1}{2n\pi + \pi/2}$. Then $f(x_n) = g(x_n)$. We conclude $g(x_n) \longrightarrow 0$. But g is continuous at x = 0, so • $g(0) = \lim_{x \longrightarrow 0} g(x) = 0.$

Question 2. Prove by definition of limit that $\lim_{x\to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists and is finite if and only if $\lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h}$ exists and is finite.

Solution.

"If". •

Assuming $\lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h}$ exists and is finite, we prove $\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists and is finite.

Denote $L := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$. For any $\varepsilon > 0$, there is $\delta_1 > 0$ such that for any $0 < |h| < \delta_1$,

$$\left| \frac{f(x_0+h) - f(x_0)}{h} - L \right| < \varepsilon.$$
(4)

Now take $\delta = \delta_1$. For any $0 < |x - x_0| < \delta = \delta_1$, we have

$$\left|\frac{f(x) - f(x_0)}{x - x_0} - L\right| = \left|\frac{f(x_0 + (x - x_0)) - f(x_0)}{x - x_0} - L\right| < \varepsilon$$
(5)

and therefore $\lim_{h\to 0} \frac{f(x) - f(x_0)}{x - x_0} = L$ is finite.

"Only if".

Assuming $\lim_{h\to 0} \frac{f(x) - f(x_0)}{x - x_0}$ exists and is finite, we prove $\lim_{h\to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ exists and is finite. Denote $L := \lim_{h\to 0} \frac{f(x) - f(x_0)}{x - x_0}$. For any $\varepsilon > 0$ there is $\delta_2 > 0$ such that for any $0 < |x - x_0| < \delta_2$,

$$\left|\frac{f(x) - f(x_0)}{x - x_0} - L\right| < \varepsilon.$$
(6)

Now set $\delta = \delta_2$. For any h satisfying $0 < |h| < \delta$, we have $0 < |(x_0 + h) - x_0| < \delta = \delta_2$. Therefore

$$\left|\frac{f(x_0+h) - f(x_0)}{h} - L\right| = \left|\frac{f(x_0+h) - f(x_0)}{(x_0+h) - x_0} - L\right| < \varepsilon.$$
(7)

Therefore $\lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h} = L.$

Question 3. Prove that $f(x) = x^3$ is differentiable at every $x_0 \in \mathbb{R}$ by definition.

Solution. We have

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^3 - x_0^3}{x - x_0} = x^2 + x_0 x + x_0^2.$$
(8)

This is a polynomial of x since x_0 is constant. Therefore

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \left[x^2 + x_0 x + x_0^2 \right] = x_0^2 + x_0^2 + x_0^2 = 3 x_0^2.$$
(9)

So f(x) is differentiable at x_0 .

Question 4. Given x' = 1. Use mathematical induction to prove

$$\forall n \in \mathbb{N}, \qquad (x^n)' = n \, x^{n-1}. \tag{10}$$

Solution. Let P(n) be the statement: $(x^n)' = n x^{n-1}$.

- Base is already given. •
- $P(n) \Longrightarrow P(n+1)$. Assume $(x^n)' = n x^{n-1}$. By Leibniz rule we have ٠

$$(x^{n+1})' = (x^n \cdot x)' = (x^n)' \cdot x + x^n \cdot x' = n \, x^{n-1} \cdot x + x^n = (n+1) \, x^n. \tag{11}$$

Thus ends the proof.

Question 5. Let f(x) be differentiable at $x_0 \in \mathbb{R}$. Prove that the limit

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} \tag{12}$$

exists and equals $f'(x_0)$.

Solution. As f(x) is differentiable at $x_0 \in \mathbb{R}$, there is $\delta > 0$ such that for all $0 < |x - x_0| < \delta$,

$$\left|\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)\right| < \varepsilon.$$

$$\tag{13}$$

Now for all $0 < |h| < \delta$, set $y := x_0 + h, z = x_0 - h$. Then we have

$$0 < |y - x_0| < \delta, \qquad 0 < |z - x_0| < \delta.$$
(14)

This gives through triangle inequality:

$$\left| \frac{f(x_{0}+h) - f(x_{0}-h)}{2h} - f'(x_{0}) \right| = \left| \frac{1}{2} \left(\frac{f(y) - f(x_{0})}{y - x_{0}} + \frac{f(z) - f(x_{0})}{z - x_{0}} \right) - f'(x_{0}) \right|$$

$$= \frac{1}{2} \left| \left(\frac{f(y) - f(x_{0})}{y - x_{0}} - f'(x_{0}) \right) + \left(\frac{f(z) - f(x_{0})}{z - x_{0}} - f'(x_{0}) \right) \right|$$

$$\leq \frac{1}{2} \left[\left| \frac{f(y) - f(x_{0})}{y - x_{0}} - f'(x_{0}) \right| + \left| \frac{f(z) - f(x_{0})}{z - x_{0}} - f'(x_{0}) \right| \right]$$

$$< \frac{1}{2} (\varepsilon + \varepsilon) = \varepsilon.$$
(15)

Thus ends the proof.

Remark. Since "by definition" is not required, it is also OK to prove through:

Since f is differentiable at x_0 ,

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$
(16)

This gives

$$\lim_{h \to 0} \frac{f(x_0 - h) - f(x_0)}{-h} = f'(x_0).$$
(17)

Therefore

$$\lim_{h \to 0} \left[\frac{f(x_0 + h) - f(x_0)}{h} + \frac{f(x_0 - h) - f(x_0)}{-h} \right] = 2 f'(x_0).$$
(18)

Simplify the LHS we have

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0).$$
(19)

Question 6. Let

$$f(x) = \frac{\exp\left(x^3\right)}{\cos x}.$$
(20)

Prove that f(x) is differentiable at 0 and calculate f'(0).

Solution.

Since x^3 and e^x are differentiable at every $x \in \mathbb{R}$, so is the composite function $\exp(x^3)$. Furthermore $\cos x$ is differentiable at every $x \in \mathbb{R}$ and $\cos 0 = 1 \neq 0$. So f(x) is differentiable at x = 0.

We calculate

$$f'(x) = \frac{[\exp(x^3)]' \cos x - \exp(x^3) (\cos x)'}{(\cos x)^2}$$

= $\frac{\exp(x^3) (x^3)' \cos x + \exp(x^3) \sin x}{(\cos x)^2}$
= $\frac{3 x^2 \exp(x^3) \cos x + \exp(x^3) \sin x}{(\cos x)^2}$. (21)

Setting x = 0 we have f'(0) = 0.