Math 314 Fall 2013 Homework 6 Solutions

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $f(x)=|x|$. Prove by definition that $f(x)$ is a continuous function (that is $f(x)$ is continuous at every $x_{0} \in \mathbb{R}$).

Solution. For any $\varepsilon>0$, take $\delta=\varepsilon$. Then for every x satisfying $\left|x-x_{0}\right|<\delta$, we have

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right|=\left||x|-\left|x_{0}\right|\right| \leqslant\left|x-x_{0}\right|<\delta=\varepsilon \tag{1}
\end{equation*}
$$

where the inequality $\left||x|-\left|x_{0}\right|\right| \leqslant\left|x-x_{0}\right|$ is triangle inequality. Therefore $f(x)$ is continuous at x_{0}.
Question 2. Let $f(x)=\left\{\begin{array}{ll}\exp \left[-\frac{1}{x^{4}}\right] & x \neq 0 \\ 0 & x=0\end{array}\right.$. Prove (by definition when necessary) that f is a continuous function.

Solution. Let $x_{0} \in \mathbb{R}$. We prove that $f(x)$ is continuous at x_{0}. Two cases.

- $x_{0} \neq 0$. In this case,

1. 1 is continuous at $x_{0} ; x^{4}$ is continuous at x_{0}. Furthermore if $x_{0} \neq 0$ we have $x_{0}^{4} \neq 0$. Consequently the ratio $\frac{1}{x^{4}}$ is continuous at x_{0}.
2. e^{-x} is a continuous function therefore the composite function $\exp \left[-\frac{1}{|x|}\right]$ is continuous at every $x_{0} \neq 0$.

- $x_{0}=0$. We prove by definition. For any $\varepsilon>0$, there are two cases.

1. If $\varepsilon<1$, take $\delta<(-\ln \varepsilon)^{-1 / 4}$, then we have, for all x satisfying $|x-0|<\delta$,

$$
\begin{equation*}
|f(x)-f(0)|=\exp \left[-\frac{1}{x^{4}}\right]<\exp \left(-\frac{1}{\delta}\right)<\varepsilon \tag{2}
\end{equation*}
$$

2. (not required for this homework or midterm, but will be required after midterm) If $\varepsilon \geqslant 1$, take $\delta=1$. Then for all x satisfying $|x-0|<\delta$,

$$
\begin{equation*}
|f(x)-f(0)|=\exp \left[-\frac{1}{x^{4}}\right]<\exp (-1)<1 \leqslant \varepsilon \tag{3}
\end{equation*}
$$

Therefore $f(x)$ is also continuous at $x_{0}=0$.
Question 3. Assume there is $\delta_{0}>0$ such that $h(x) \leqslant f(x) \leqslant g(x)$ for all $x \in\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$. Further assume that h, g are continuous at x_{0} with $h\left(x_{0}\right)=g\left(x_{0}\right)$. Prove that $f(x)$ is also continuous at x_{0}.

Solution. We prove that if there is $\delta_{0}>0$ such that $h(x) \leqslant f(x) \leqslant g(x)$ for all $x \in\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$. Further assume that h, g are continuous at x_{0} and $h\left(x_{0}\right)=g\left(x_{0}\right)$, then f is continuous at x_{0}.

Since h, g are continuous, we have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} h(x)=h\left(x_{0}\right)=g\left(x_{0}\right)=\lim _{x \longrightarrow x_{0}} g(x) . \tag{4}
\end{equation*}
$$

Application of Squeeze theorem gives

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} f(x)=h\left(x_{0}\right)=g\left(x_{0}\right) . \tag{5}
\end{equation*}
$$

But since $x_{0} \in\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right), h\left(x_{0}\right) \leqslant f\left(x_{0}\right) \leqslant g\left(x_{0}\right)$ together with $h\left(x_{0}\right)=g\left(x_{0}\right) \Longrightarrow f\left(x_{0}\right)=h\left(x_{0}\right)=g\left(x_{0}\right)$. Summarizing, we have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} f(x)=f\left(x_{0}\right) \tag{6}
\end{equation*}
$$

that is $f(x)$ continuous at x_{0}.
Question 4. Let $f(x)=x^{6}+5 x^{5}-4 x^{3}+10 x^{2}+7 x-1$. Prove that there is $a \in \mathbb{R}$ such that $f(a)=0$.
Solution. Clearly $f(0)=-1<0$. On the other hand we have $f(1)=18>0$. Since $f(x)$ is continuous, it is continuous on $[0,1]$, by Intermediate Value Theorem we have the existence of $a \in(0,1)$ such that $f(a)=0$.

Question 5. Let $A, B \subseteq \mathbb{R}$. Further assume that there is $m>0$ such that for every $b \in B,|b|<m$. Let $C:=\{a+b \mid a \in A, b \in B\}$. Prove that $\sup A-m \leqslant \sup C \leqslant \sup A+m$.

Solution.

- We prove that $\sup A+m$ is an upper bound of C. For any $c \in C$, by definition there are $a \in A, b \in B$ such that $c=a+b<\sup A+m$. Therefore sup $A+m$ is an upper bound of C and by definition $\sup C \leqslant \sup A+m$.
- We prove $\sup A \leqslant \sup C+m$. For any $a \in A$, take an arbitrary $b \in B$. Then we have

$$
\begin{equation*}
a+b \in C \Longrightarrow a+b \leqslant \sup C \Longrightarrow a \leqslant \sup C-b \Longrightarrow a \leqslant \sup C+m \tag{7}
\end{equation*}
$$

Thus $\sup C+m$ is an upper bound of A and consequently $\sup A \leqslant \sup C+m \Longrightarrow \sup A-m \leqslant \sup C$.
Question 6. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers. Assume $\lim _{n \rightarrow \infty} y_{n}=0$. Prove:

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)=\limsup _{n \longrightarrow \infty} x_{n} \tag{8}
\end{equation*}
$$

Solution. For any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for all $n>N,\left|y_{n}\right|<\varepsilon$. Now for every $k \geqslant n$, we have

On the other hand,

$$
\begin{equation*}
x_{k}+y_{k} \leqslant \sup _{k \geqslant n} x_{k}+\left|y_{k}\right| \leqslant \sup _{k \geqslant n} x_{k}+\varepsilon ; \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
x_{k}=x_{k}+y_{k}-y_{k} \leqslant \sup _{k \geqslant n}\left(x_{k}+y_{k}\right)+\left|y_{k}\right| \leqslant \sup _{k \geqslant n}\left(x_{k}+y_{k}\right)+\varepsilon . \tag{10}
\end{equation*}
$$

Thus for all $n>N$ we have

$$
\begin{equation*}
\sup _{k \geqslant n} x_{k}-\varepsilon \leqslant \sup _{k \geqslant n}\left(x_{k}+y_{k}\right) \leqslant \sup _{k \geqslant n} x_{k}+\varepsilon . \tag{11}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$, we have

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty} x_{n}-\varepsilon \leqslant \limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)<\limsup _{n \longrightarrow \infty} x_{n}+\varepsilon \tag{12}
\end{equation*}
$$

following Comparison Theorem. Note that this holds for every $\varepsilon>0$.
Now assume $\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right) \neq \limsup _{n \longrightarrow \infty} x_{n}$. There are two cases.

- $\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)>\limsup _{n \longrightarrow \infty} x_{n}$. Taking $\varepsilon=\frac{\limsup _{n} \longrightarrow \infty\left(x_{n}+y_{n}\right)-\limsup _{n} \longrightarrow \infty x_{n}}{2}$ we have

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)<\limsup _{n \longrightarrow \infty} x_{n}+\varepsilon=\frac{\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)+\limsup _{n \longrightarrow \infty} x_{n}}{2}<\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right) \tag{13}
\end{equation*}
$$

contradiction.

- $\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)<\limsup _{n \longrightarrow \infty} x_{n}$. Taking $\varepsilon=\frac{\limsup _{n} \longrightarrow \infty x_{n}-\limsup _{n} \longrightarrow \infty\left(x_{n}+y_{n}\right)}{2}$ we have

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)>\limsup _{n \longrightarrow \infty} x_{n}-\varepsilon=\frac{\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)+\limsup _{n \longrightarrow \infty} x_{n}}{2}>\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right) \tag{14}
\end{equation*}
$$

contradiction.
Therefore $\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)=\limsup _{n \longrightarrow \infty} x_{n}$.
Remark. Alternatively, one can prove as follows. On one hand we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}=\limsup _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} y_{n}=\limsup _{n \rightarrow \infty} x_{n} \tag{15}
\end{equation*}
$$

Note that the first inequality has been proved in HW4, and the first equality is because $\lim _{n \rightarrow \infty} y_{n}$ exists; On the other hand, we have
$\limsup _{n \rightarrow \infty} x_{n}=\limsup _{n \rightarrow \infty}\left[\left(x_{n}+y_{n}\right)+\left(-y_{n}\right)\right] \leqslant \limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)+\limsup _{n \rightarrow \infty}\left(-y_{n}\right)=\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)+\lim _{n \rightarrow \infty}\left(-y_{n}\right)=$ $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)$.

