## Math 314 Fall 2013 Homework 6

DUE WEDNESDAY OCT. 23 5PM IN ASSIGNMENT BOX (CAB 3RD FLOOR)

- There are 6 problems, each 5 points. Total 30 points. •
- Please justify all your answers through proof or counterexample. •

**Question 1.** Let f(x) = |x|. Prove by definition that f(x) is a continuous function (that is f(x) is continuous at every  $x_0 \in \mathbb{R}$ ).

**Question 2.** Let  $f(x) = \begin{cases} \exp\left[-\frac{1}{x^4}\right] & x \neq 0 \\ 0 & x = 0 \end{cases}$ . Prove (by definition when necessary) that f is a continuous function.

**Question 3.** Assume there is  $\delta_0 > 0$  such that  $h(x) \leq f(x) \leq g(x)$  for all  $x \in (x_0 - \delta_0, x_0 + \delta_0)$ . Further assume that h, g are continuous at  $x_0$  with  $h(x_0) = g(x_0)$ . Prove that f(x) is also continuous at  $x_0$ .

Question 4. Let  $f(x) = x^6 + 5x^5 - 4x^3 + 10x^2 + 7x - 1$ . Prove that there is  $a \in \mathbb{R}$  such that f(a) = 0.

**Question 5.** Let  $A, B \subseteq \mathbb{R}$ . Further assume that there is m > 0 such that for every  $b \in B$ , |b| < m. Let  $C := \{a+b \mid a \in A, b \in B\}.$  Prove that  $\sup A - m \leq \sup C \leq \sup A + m$ .

**Question 6.** Let  $\{x_n\}$  and  $\{y_n\}$  be sequences of real numbers. Assume  $\lim_{n\to\infty} y_n = 0$ . Prove:

$$\limsup_{n \to \infty} (x_n + y_n) = \limsup_{n \to \infty} x_n. \tag{1}$$