## Math 314 Fall 2013 Homework 6

Due Wednesday Oct. 23 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $f(x)=|x|$. Prove by definition that $f(x)$ is a continuous function (that is $f(x)$ is continuous at every $x_{0} \in \mathbb{R}$ ).

Question 2. Let $f(x)=\left\{\begin{array}{ll}\exp \left[-\frac{1}{x^{4}}\right] & x \neq 0 \\ 0 & x=0\end{array}\right.$. Prove (by definition when necessary) that $f$ is a continuous function.

Question 3. Assume there is $\delta_{0}>0$ such that $h(x) \leqslant f(x) \leqslant g(x)$ for all $x \in\left(x_{0}-\delta_{0}, x_{0}+\delta_{0}\right)$. Further assume that $h, g$ are continuous at $x_{0}$ with $h\left(x_{0}\right)=g\left(x_{0}\right)$. Prove that $f(x)$ is also continuous at $x_{0}$.

Question 4. Let $f(x)=x^{6}+5 x^{5}-4 x^{3}+10 x^{2}+7 x-1$. Prove that there is $a \in \mathbb{R}$ such that $f(a)=0$.
Question 5. Let $A, B \subseteq \mathbb{R}$. Further assume that there is $m>0$ such that for every $b \in B,|b|<m$. Let $C:=\{a+b \mid a \in A, b \in B\}$. Prove that $\sup A-m \leqslant \sup C \leqslant \sup A+m$.

Question 6. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers. Assume $\lim _{n \rightarrow \infty} y_{n}=0$. Prove:

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)=\limsup _{n \longrightarrow \infty} x_{n} \tag{1}
\end{equation*}
$$

