Math 314 Fall 2013 Homework 5 Solutions

Due Wednesday Oct. 16 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $\left\{x_{n}\right\}=\left\{x_{1}, x_{2}, \ldots\right\}$ be a sequence. Denote

Critique the following claim:

$$
\begin{equation*}
M:=\limsup _{n \longrightarrow \infty} x_{n}, \quad m:=\liminf _{n \longrightarrow \infty} x_{n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad m-100<x_{n}<M+100 \tag{2}
\end{equation*}
$$

If it is true provide a proof, otherwise give a counter-example.
Solution. The claim is false. For example, take $x_{1}=200, x_{2}=-200$ and then $\forall n \in \mathbb{N}, n \geqslant 3, x_{n}=0$. Now clearly $\lim _{n \longrightarrow \infty} x_{n}=0$, consequently $M=m=0$. But $x_{1}>M+100$ and $x_{2}<m-100$.

Question 2. Are the following series convergent or divergent? Justify your answers.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n!}}, \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}} \tag{3}
\end{equation*}
$$

Solution.

- For the first series, apply the ratio test:

$$
\begin{equation*}
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{\sqrt{n+1}} \tag{4}
\end{equation*}
$$

thus we have $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$ which gives $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$. By ratio test we know the series converges.

- For the second series we notice

$$
\begin{equation*}
\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}=\sqrt{n+1}-\sqrt{n} \tag{5}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
s_{n}:=\sum_{k=1}^{n} \frac{1}{\sqrt{k+1}+\sqrt{k}}=\sum_{k=1}^{n}(\sqrt{k+1}-\sqrt{k})=\sqrt{n+1}-1 . \tag{6}
\end{equation*}
$$

Since $\lim _{n \longrightarrow \infty} s_{n}=\infty$, we have by definition of series convergence

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=\infty \tag{7}
\end{equation*}
$$

- Althernative method for the 2 nd series. We prove:

$$
\begin{equation*}
\forall n \geqslant 1, \quad \frac{1}{\sqrt{n+1}+\sqrt{n}}>\frac{1}{3 \sqrt{n}} \tag{8}
\end{equation*}
$$

All we need to show is $\sqrt{n+1}<2 \sqrt{n}=\sqrt{4 n}$ which immediately follows from $4 n-(n+1)=3 n-1>0$ for all $n \geqslant 1$. Now since the generalized harmonic series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\infty \tag{9}
\end{equation*}
$$

so does $\sum_{n=1}^{\infty} \frac{1}{3 \sqrt{n}}$. Consequently $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ diverges.
Remark. For the second series, both "the series converges to ∞ " and "the series diverge to ∞ " are correct. If the "alternative" method is used, "the series diverges" is also a correct answer.

Question 3. Let $x \in \mathbb{R}$. Consider the infinite series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{x^{n}}{n^{\sqrt{2}}} . \tag{10}
\end{equation*}
$$

Prove that it is convergent when $|x| \leqslant 1$ and divergent when $|x|>1$.
Solution. We apply the ratio test to $a_{n}:=\frac{x^{n}}{n^{\sqrt{2}}}$:

$$
\begin{equation*}
\left|\frac{a_{n+1}}{a_{n}}\right|=|x|\left(\frac{n+1}{n}\right)^{\sqrt{2}} \tag{11}
\end{equation*}
$$

We have

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=|x| . \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\liminf _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=|x| . \tag{13}
\end{equation*}
$$

By the ratio test we know the series converges when $|x|<1$ and diverges when $|x|>1$.
Now we discuss the case $|x|=1$. In this case we have

$$
\begin{equation*}
\left|a_{n}\right| \leqslant \frac{1}{n^{\sqrt{2}}} . \tag{14}
\end{equation*}
$$

Since $\sum_{n=0}^{\infty} \frac{1}{n^{\sqrt{2}}}$ is convergent, $\sum_{n=0}^{\infty} a_{n}$ is also convergent when $|x|=1$.
Question 4. Calculate the following limits. Provide justification whenever needed.

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}, \quad \lim _{x \rightarrow \infty}(\sqrt[3]{x+5}-\sqrt[3]{x}) \tag{15}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}=\lim _{x \rightarrow 1} \frac{(x-2)(x-1)}{(x-3)(x-1)}=\lim _{x \rightarrow 1} \frac{x-2}{x-3}=\frac{\lim _{x \rightarrow 1}(x-2)}{\lim _{x \rightarrow 1}(x-3)}=\frac{-1}{-2}=\frac{1}{2} . \tag{16}
\end{equation*}
$$

Here the 3rd equality follows from the limit theorem for ratios since both $\lim _{x \rightarrow 1}(x-2)$ and $\lim _{x \rightarrow 1}(x-3)$ exists and furthermore $\lim _{x \rightarrow 1}(x-3)=-2 \neq 0$.

For the second limit we apply the identity $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.

$$
\begin{equation*}
\lim _{x \rightarrow \infty}(\sqrt[3]{x+5}-\sqrt[3]{x})=\lim _{x \rightarrow \infty} \frac{(x+5)-x}{\sqrt[3]{(x+5)^{2}}+\sqrt[3]{x+5} \sqrt[3]{x}+\sqrt[3]{x^{2}}}=\lim _{x \rightarrow \infty} \frac{5}{\sqrt[3]{(x+5)^{2}}+\sqrt[3]{x+5} \sqrt[3]{x}+\sqrt[3]{x^{2}}} \tag{17}
\end{equation*}
$$

Now notice

$$
\begin{equation*}
0 \leqslant \frac{5}{\sqrt[3]{(x+5)^{2}}+\sqrt[3]{x+5} \sqrt[3]{x}+\sqrt[3]{x^{2}}} \leqslant 5 x^{-2 / 3} \tag{18}
\end{equation*}
$$

by Squeeze Theorem we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{5}{\sqrt[3]{(x+5)^{2}}+\sqrt[3]{x+5} \sqrt[3]{x}+\sqrt[3]{x^{2}}}=0 \tag{19}
\end{equation*}
$$

that is

$$
\begin{equation*}
\lim _{x \rightarrow \infty}(\sqrt[3]{x+5}-\sqrt[3]{x})=0 \tag{20}
\end{equation*}
$$

Question 5. Discuss the existence/non-existence of the following limits. If a limit exists find the limit and justify your calculation, otherwise provide a proof.

$$
\begin{equation*}
\lim _{x \longrightarrow \infty} \exp [\sin x+1], \quad \lim _{x \longrightarrow \infty} \exp [\sin x-3 x] \tag{21}
\end{equation*}
$$

Solution. The first limit does not exist. Take $x_{n}=2 n \pi$ and $y_{n}=\left(2 n+\frac{1}{2}\right) \pi$. We have

$$
\begin{equation*}
\sin x_{n}=0, \quad \sin y_{n}=1 \tag{22}
\end{equation*}
$$

Now check

$$
\begin{gather*}
\lim _{n \longrightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty} y_{n}=\infty ; \tag{23}\\
\lim _{x \longrightarrow \infty} \exp \left[\sin x_{n}+1\right]=e, \quad \lim _{x \longrightarrow \infty} \exp \left[\sin y_{n}+1\right]=e^{2} \tag{24}
\end{gather*}
$$

They are different so the limit does not exist.
The second limit is 0 . Since $\sin x \leqslant 1$, we have

$$
\begin{equation*}
0 \leqslant \exp [\sin x-3 x] \leqslant \exp [1-3 x]=e e^{-3 x} \tag{25}
\end{equation*}
$$

Applying Squeeze Theorem we conclude

$$
\begin{equation*}
\lim _{x \longrightarrow \infty} \exp [\sin x-3 x]=0 . \tag{26}
\end{equation*}
$$

Question 6. Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ be functions. Let $a \in \mathbb{R}$. Critique the following claim:

$$
\text { If } \lim _{x \longrightarrow a} f(x)=b \text { and } \lim _{x \longrightarrow b} g(x)=L, \text { then } \lim _{x \longrightarrow a} g(f(x))=L
$$

If it is true provide a proof, otherwise find a counter-example.
Solution. The claim is false. For example, let $a=0, f(x)=1$ and $g(x)=\left\{\begin{array}{ll}0 & x=1 \\ 1 & x \neq 0\end{array}\right.$. Then $\lim _{x \longrightarrow 0} f(x)=1$, $\lim _{x \longrightarrow 1} g(x)=1$ but $g(f(x))=0$ so $\lim _{x \longrightarrow 0} g(f(x))=0 \neq 1$.

