Math 314 Fall 2013 Homework 5

Due Wednesday Oct. 16 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $\left\{x_{n}\right\}=\left\{x_{1}, x_{2}, \ldots\right\}$ be a sequence. Denote

Critique the following claim:

$$
\begin{equation*}
M:=\limsup _{n \longrightarrow \infty} x_{n}, \quad m:=\liminf _{n \longrightarrow \infty} x_{n} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad m-100<x_{n}<M+100 . \tag{2}
\end{equation*}
$$

If it is true provide a proof, otherwise give a counter-example.
Question 2. Are the following series convergent or divergent? Justify your answers.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n!}}, \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}} \tag{3}
\end{equation*}
$$

Question 3. Let $x \in \mathbb{R}$. Consider the infinite series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{\sqrt{2}}} \tag{4}
\end{equation*}
$$

Prove that it is convergent when $|x| \leqslant 1$ and divergent when $|x|>1$.
Question 4. Calculate the following limits. Provide justification whenever needed.

$$
\begin{equation*}
\lim _{x \longrightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}, \quad \lim _{x \longrightarrow \infty}(\sqrt[3]{x+5}-\sqrt[3]{x}) \tag{5}
\end{equation*}
$$

Question 5. Discuss the existence/non-existence of the following limits. If a limit exists find the limit and justify your calculation, otherwise provide a proof.

$$
\begin{equation*}
\lim _{x \longrightarrow \infty} \exp [\sin x+1], \quad \lim _{x \longrightarrow \infty} \exp [\sin x-3 x] \tag{6}
\end{equation*}
$$

Question 6. Let $f, g: \mathbb{R} \mapsto \mathbb{R}$ be functions. Let $a \in \mathbb{R}$. Critique the following claim:

$$
\text { If } \lim _{x \longrightarrow a} f(x)=b \text { and } \lim _{x \longrightarrow b} g(x)=L, \text { then } \lim _{x \longrightarrow a} g(f(x))=L
$$

If it is true provide a proof, otherwise find a counter-example.

