Math 314 Fall 2013 Homework 4 Solutions

Due Wednesday Oct. 9 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.
- You can use any theorem/lemma/proposition in the lecture notes (Please explici

Question 1. Let $f: X \mapsto Y$ be a function. Critique the following claim.
f is one-to-one if and only if $f(A \cap B)=f(A) \cap f(B)$ for all subsets A, B of X.
If it is true prove it; Otherwise provide a counter-example.
Solution. True.

- "If". Assume that f is not one-to-one. Then there are $x_{1}, x_{2} \in X$ such that $x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$. Take $A=\left\{x_{1}\right\}, B=\left\{x_{2}\right\}$, then $A \cap B=\varnothing$ so $f(A \cap B)=\varnothing$. But $f(A) \cap f(B)=\left\{f\left(x_{1}\right)\right\} \neq \varnothing$. Contradiction.
- "Only if". Assume that there are $A, B \subseteq X$ such that $f(A \cap B) \neq f(A) \cap f(B)$. Since $f(A \cap B) \subseteq$ $f(A) \cap f(B)$, there is $y \in Y$ such that $y \in f(A) \cap f(B)$ but $y \notin f(A \cap B)$. As $y \in f(A)$, there is $x_{1} \in A$ such that $y=f\left(x_{1}\right)$; As $y \in f(B)$ there is $x_{2} \in B$ such that $y=f\left(x_{2}\right)$. Because $y \notin f(A \cap B), x_{1} \neq x_{2}$. This contradicts f being one-to-one.

Question 2. Let $x_{0} \in \mathbb{R}$ be an arbitrary real number different from 2 and define x_{n} through

$$
\begin{equation*}
x_{n}=\frac{x_{n-1}}{2}+1 . \tag{1}
\end{equation*}
$$

Does the sequence converge? If so find the limit. Justify your answer.
Solution. We have

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right|=\frac{\left|x_{n}-x_{n-1}\right|}{2} \Longrightarrow\left|x_{n+1}-x_{n}\right|=\left(\frac{1}{2}\right)^{n}\left|x_{1}-x_{0}\right| \tag{2}
\end{equation*}
$$

For any $\varepsilon>0$, since $\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}$ converges, there is $N \in \mathbb{N}$ such that for all $n>m>N$,

$$
\begin{equation*}
\left|\sum_{k=m}^{n-1}\left(\frac{1}{2}\right)^{k}\right|<\frac{\varepsilon}{\left|x_{1}-x_{0}\right|} \tag{3}
\end{equation*}
$$

Note that since $x_{0} \neq 2, x_{1}-x_{0} \neq 0$.
This means for any $n>m>N$,

$$
\begin{equation*}
\left|x_{n}-x_{m}\right| \leqslant\left|x_{n}-x_{n-1}\right|+\cdots+\left|x_{m+1}-x_{m}\right|=\left[\left(\frac{1}{2}\right)^{n-1}+\cdots+\left(\frac{1}{2}\right)^{m}\right]\left|x_{1}-x_{0}\right|<\varepsilon \tag{4}
\end{equation*}
$$

Thus $\left\{x_{n}\right\}$ is Cauchy and there is $x \in \mathbb{R}$ such that $x_{n} \longrightarrow x$. Therefore

$$
\begin{equation*}
x=\lim _{n \longrightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty}\left(\frac{x_{n-1}}{2}+1\right)=\frac{x}{2}+1 \Longrightarrow x=2 . \tag{5}
\end{equation*}
$$

Remark. Alternatively, one can solve x_{n} one by one:

$$
\begin{equation*}
x_{n}=\frac{x_{n-1}}{2}+1=\frac{\frac{x_{n-2}}{2}+1}{2}+1=\frac{x_{n-2}}{2^{2}}+2^{-1}+1=\frac{x_{n-3}}{2^{3}}+2^{-2}+2^{-1}+1=\cdots=\frac{x_{0}}{2^{n}}+2^{-(n-1)}+\cdots+1 \tag{6}
\end{equation*}
$$

and then take limit.
Remark. Alternatively, one can prove that:

- If $x_{0}<2$, then x_{n} is increasing and upper bounded by 2 ;
- If $x_{0}>2$, then x_{n} is decreasing and lower bounded by 2 .
and then conclude that the limit exists.
Question 3. Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be non-negative series with $a_{n}>0, b_{n}>0$ for all $n \in \mathbb{N}$.
a) (3 pts) If $\forall n \in \mathbb{N}, \frac{a_{n+1}}{a_{n}} \leqslant \frac{b_{n+1}}{b_{n}}$, then $\sum_{n=1}^{\infty} b_{n}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
b) (2 pt) Use a) to prove convergence for $\sum_{n=1}^{\infty} a_{n}$ with $a_{1}=1$ and

$$
\begin{equation*}
a_{n}=\frac{1}{4} \frac{2}{5} \cdots \frac{n-1}{n+2} \tag{7}
\end{equation*}
$$

(Hint: use $b_{n}=\frac{1}{n(n+1)}$.)

Solution.

a) From the assumption we have (note that $a_{1}>0$ is used here)

$$
\begin{gather*}
\frac{a_{2}}{a_{1}} \leqslant \frac{b_{2}}{b_{1}} \Longrightarrow a_{2} \leqslant \frac{a_{1}}{b_{1}} b_{2} ; \tag{8}\\
\frac{a_{3}}{a_{2}} \cdot \frac{a_{2}}{a_{1}} \leqslant \frac{b_{3}}{b_{2}} \cdot \frac{b_{2}}{b_{1}} \Longrightarrow \frac{a_{3}}{a_{1}} \leqslant \frac{b_{3}}{b_{1}} \Longrightarrow a_{3} \leqslant \frac{a_{1}}{b_{1}} b_{3} ; \tag{9}
\end{gather*}
$$

In general we have

$$
\begin{equation*}
a_{n} \leqslant \frac{a_{1}}{b_{1}} b_{n} \tag{10}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Now for any $\varepsilon>0$, since $\sum_{n=1}^{\infty} b_{n}$ converges, there is $N_{1} \in \mathbb{N}$ such that for all $m>n>N_{1}$,

$$
\begin{equation*}
\left|\sum_{k=n+1}^{m} b_{k}\right|<\frac{b_{N_{0}}}{a_{N_{0}}} \varepsilon . \tag{11}
\end{equation*}
$$

Take $N=\max \left\{N_{0}, N_{1}\right\}$. We have for all $m>n>N$, (Note that we need the positivity of a_{k} in the first inequality below)

$$
\begin{equation*}
\left|\sum_{k=n+1}^{m} a_{k}\right| \leqslant\left|\sum_{k=n+1}^{m} \frac{a_{N_{0}}}{b_{N_{0}}} b_{k}\right|=\frac{a_{N_{0}}}{b_{N_{0}}}\left|\sum_{k=n+1}^{m} b_{k}\right|<\varepsilon \tag{12}
\end{equation*}
$$

Therefore $\sum_{n=1}^{\infty} a_{n}$ converges.
b) Take b_{n} as in the hint. We know that $\sum_{n=1}^{\infty} b_{n}=1$. Now check

$$
\begin{equation*}
\frac{a_{n+1}}{a_{n}}=\frac{n}{n+3} \leqslant \frac{b_{n+1}}{b_{n}}=\frac{n}{n+2} \tag{13}
\end{equation*}
$$

for all $n \geqslant 2$. Thus application of a) gives the convergence of $\sum_{n=1}^{\infty} a_{n}$.
Remark. In fact this problem is a bit silly as

$$
\begin{equation*}
a_{n}=\frac{(n-1)!}{[(n+2)!/ 6]}=\frac{6}{(n+2)(n+1) n} . \tag{14}
\end{equation*}
$$

Question 4. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences of real numbers. Which of the following is the most precise relation between $\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)$ and $\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$?
a) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
b) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
c) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$ and it may happen that $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<$ $\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
Justify your answer.

Solution. The most precise relation is c).

- We prove $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$. By a theorem in lecture notes, we have (recall that a sequence is in fact a function with domain \mathbb{N})

$$
\begin{equation*}
\sup _{k \geqslant n}\left(x_{k}+y_{k}\right) \leqslant \sup _{k \geqslant n} x_{k}+\sup _{k \geqslant n} y_{k} \tag{15}
\end{equation*}
$$

Taking limit, by Comparison Theorem, we have $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+$ $\limsup _{n \rightarrow \infty} y_{n}$.

- An example of $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$. Take $x_{n}=(-1)^{n}, y_{n}=(-1)^{n+1}$. Then $\limsup x_{n}=\limsup y_{n}=1$ but $x_{n}+y_{n}=0$ for all $n \in \mathbb{N}$ so $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=0<1+1$.

Question 5. Let $\left\{x_{n}\right\}$ be a sequence and $\left\{x_{n_{k}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$. Prove that if $\left\{x_{n_{k}}\right\}$ is not bounded above, then $\left\{x_{n}\right\}$ is not bounded above either.

Proof. First we obtain the negation of $\left\{x_{n}\right\}$ is bounded above:

$$
\begin{equation*}
\neg\left[\exists M \in \mathbb{R} \forall n \in \mathbb{N} \quad x_{n} \leqslant M\right]=\left[\forall M \in \mathbb{R} \exists n \in \mathbb{N} \quad x_{n}>M\right] . \tag{16}
\end{equation*}
$$

Thus the assumption $\left\{x_{n_{k}}\right\}$ is not bounded above means

$$
\begin{equation*}
\forall M \in \mathbb{R} \exists k \in \mathbb{N} \quad x_{n_{k}}>M . \tag{17}
\end{equation*}
$$

Thus for any $M \in \mathbb{R}$, there is $k \in \mathbb{N}$ such that $x_{n_{k}}>M$. Now take $n=n_{k}$. We see that there is $n \in \mathbb{N}$ such th at $x_{n}>M$. Therefore $\forall M \in \mathbb{R} \exists n \in \mathbb{N} \quad x_{n}>M$ and $\left\{x_{n}\right\}$ is not bounded above.

Remark. Alternatively, one can prove by contradiction. Assume $\left\{x_{n}\right\}$ is bounded above. Then there is $M \in \mathbb{R}$ such that for all $n \in \mathbb{N}, x_{n} \leqslant M$. Now for every $k \in \mathbb{N}, n_{k} \in \mathbb{N}$ and therefore $x_{n_{k}} \leqslant M$. So $\left\{x_{n_{k}}\right\}$ is bounded above. Contradiction.

Question 6. Prove $\sum_{n=1}^{\infty} \frac{1}{n \log _{2}(n+1)}=\infty$.
Proof. We have

$$
\begin{align*}
\frac{1}{1 \log _{2}(1+1)} & >\frac{1}{2} \tag{18}\\
\frac{1}{2 \log _{2}(2+1)}+\frac{1}{3 \log _{2}(3+1)} & >\frac{1}{4 \log _{2} 4}+\frac{1}{4 \log _{2} 4}=\frac{1}{4} ; \tag{19}\\
\frac{1}{4 \log _{2}(4+1)}+\cdots+\frac{1}{7 \log _{2}(7+1)} & >\frac{4}{8 \log _{2} 8}=\frac{1}{6} \tag{20}\\
\vdots & \vdots \\
\frac{1}{2^{n-1} \log _{2}\left(2^{n-1}+1\right)}+\frac{1}{\left(2^{n}-1\right) \log _{2}\left(2^{n}\right)} & >\frac{2^{n-1}}{2^{n} n}=\frac{1}{2 n} \tag{21}\\
\vdots & \vdots
\end{align*}
$$

Therefore

$$
\begin{equation*}
S_{2^{n}-1}:=\sum_{k=1}^{2^{n}-1} \frac{1}{k \log _{2}(k+1)}>\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \tag{22}
\end{equation*}
$$

Now for any $M>0$, since $\left\{\sum_{k=1}^{n} \frac{1}{k}\right\}$ is not bounded from above, there is $n_{0} \in \mathbb{N}$ such that $\sum_{k=1}^{n_{0}} \frac{1}{k}>M$. This gives

$$
\begin{equation*}
S_{2^{n_{0}-1}}>M \tag{23}
\end{equation*}
$$

and therefore $\left\{S_{n}\right\}$ is not bounded from above which means $\sum_{n=1}^{\infty} \frac{1}{n \log _{2}(n+1)}=\infty$.

