
Math 314 Fall 2013 Homework 4 Solutions

Due Wednesday Oct. 9 5pm in Assignment Box (CAB 3rd Floor)

• There are 6 problems, each 5 points. Total 30 points.

• Please justify all your answers through proof or counterexample.

• You can use any theorem/lemma/proposition in the lecture notes (Please explici

Question 1. Let f : X� Y be a function. Critique the following claim.

f is one-to-one if and only if f(A∩B)= f(A)∩ f(B) for all subsets A, B of X.

If it is true prove it; Otherwise provide a counter-example.

Solution. True.

• “If”. Assume that f is not one-to-one. Then there are x1, x2∈X such that x1� x2 but f(x1)= f(x2).
Take A = {x1}, B = {x2}, then A ∩ B = ∅ so f(A ∩ B) = ∅. But f(A) ∩ f(B) = {f(x1)} � ∅.
Contradiction.

• “Only if”. Assume that there are A, B ⊆ X such that f(A ∩ B) � f(A) ∩ f(B). Since f(A ∩ B) ⊆
f(A)∩ f(B), there is y ∈Y such that y ∈ f(A)∩ f(B) but y � f(A∩B). As y ∈ f(A), there is x1∈A

such that y = f(x1); As y ∈ f(B) there is x2∈B such that y = f(x2). Because y � f(A∩B), x1� x2.
This contradicts f being one-to-one.

Question 2. Let x0∈R be an arbitrary real number different from 2 and define xn through

xn =
xn−1

2
+ 1. (1)

Does the sequence converge? If so find the limit. Justify your answer.

Solution. We have

|xn+1−xn|=
|xn − xn−1|

2
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|x1− x0|. (2)

For any ε > 0, since
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converges, there is N ∈N such that for all n > m >N ,
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Note that since x0� 2, x1− x0� 0.
This means for any n > m > N ,

|xn −xm|6 |xn −xn−1|+� + |xm+1− xm|=

[(
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)
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|x1− x0|<ε. (4)

Thus {xn} is Cauchy and there is x∈R such that xn� x. Therefore

x= lim
n�∞

xn = lim
n�∞

(

xn−1

2
+ 1

)

=
x

2
+ 1� x= 2. (5)

Remark. Alternatively, one can solve xn one by one:

xn =
xn−1

2
+1 =

xn−2

2
+ 1

2
+1 =

xn−2

22
+2−1 + 1=

xn−3

23
+ 2−2 + 2−1 + 1 =� =

x0

2n
+ 2−(n−1) +� +1 (6)

and then take limit.

Remark. Alternatively, one can prove that:

• If x0 < 2, then xn is increasing and upper bounded by 2;
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• If x0 > 2, then xn is decreasing and lower bounded by 2.

and then conclude that the limit exists.

Question 3. Let
∑

n=1
∞

an,
∑

n=1
∞

bn be non-negative series with an > 0, bn > 0 for all n∈N.

a) (3 pts) If ∀n∈N,
an+1

an

6
bn+1

bn

, then
∑

n=1
∞
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∞

an converges;

b) (2 pt) Use a) to prove convergence for
∑

n=1
∞

an with a1 = 1 and

an =
1

4
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5
� n− 1

n +2
(7)

(Hint: use bn =
1

n (n +1)
. )

Solution.

a) From the assumption we have (note that a1 > 0 is used here)

a2

a1
6

b2

b1
� a2 6

a1

b1
b2; (8)

a3

a2
·
a2

a1
6

b3
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6
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b3; (9)

In general we have

an 6
a1

b1
bn (10)

for all n∈N.
Now for any ε > 0, since
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bn converges, there is N1∈N such that for all m > n > N1,
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Take N = max {N0, N1}. We have for all m > n > N , (Note that we need the positivity of ak in the
first inequality below)
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Therefore
∑

n=1
∞

an converges.

b) Take bn as in the hint. We know that
∑

n=1
∞

bn =1. Now check

an+1

an

=
n

n +3
6

bn+1

bn

=
n

n + 2
(13)

for all n > 2. Thus application of a) gives the convergence of
∑

n=1
∞

an.

Remark. In fact this problem is a bit silly as

an =
(n− 1)!

[(n +2)!/6]
=

6

(n +2) (n +1)n
. (14)

Question 4. Let {xn}, {yn} be sequences of real numbers. Which of the following is the most precise relation
between limsupn�∞ (xn + yn) and limsupn→∞xn + limsupn→∞ yn?

a) limsupn→∞ (xn + yn) = limsupn→∞xn + limsupn→∞ yn.

b) limsupn→∞ (xn + yn) 6 limsupn→∞xn + limsupn→∞ yn.

c) limsupn→∞ (xn+ yn)6 limsupn→∞xn+ limsupn→∞ yn and it may happen that limsupn→∞ (xn+ yn)<

limsupn→∞xn + limsupn→∞ yn.

Justify your answer.
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Solution. The most precise relation is c).

• We prove limsupn→∞ (xn + yn) 6 limsupn→∞xn + limsupn→∞ yn. By a theorem in lecture notes, we
have (recall that a sequence is in fact a function with domain N)

sup
k>n

(xk + yk)6 sup
k>n

xk + sup
k>n

yk (15)

Taking limit, by Comparison Theorem, we have limsupn→∞ (xn + yn) 6 limsupn→∞ xn +
limsupn→∞ yn.

• An example of limsupn→∞ (xn+ yn)< limsupn→∞xn+ limsupn→∞ yn. Take xn=(−1)n, yn=(−1)n+1.
Then limsupxn = limsup yn = 1 but xn + yn =0 for all n∈N so limsupn→∞ (xn + yn)= 0 < 1 + 1.

Question 5. Let {xn} be a sequence and {xnk
} be a subsequence of {xn}. Prove that if {xnk

} is not
bounded above, then {xn} is not bounded above either.

Proof. First we obtain the negation of {xn} is bounded above:

¬[∃M ∈R ∀n∈N xn 6 M ] = [∀M ∈R ∃n∈N xn > M ]. (16)

Thus the assumption {xnk
} is not bounded above means

∀M ∈R ∃k ∈N xnk
> M. (17)

Thus for any M ∈R, there is k ∈N such that xnk
> M . Now take n = nk. We see that there is n ∈N such

th at xn > M . Therefore ∀M ∈R ∃n∈N xn > M and {xn} is not bounded above. �

Remark. Alternatively, one can prove by contradiction. Assume {xn} is bounded above. Then there is
M ∈R such that for all n ∈N, xn 6 M . Now for every k ∈N, nk ∈N and therefore xnk

6 M . So {xnk
} is

bounded above. Contradiction.

Question 6. Prove
∑

n=1
∞ 1

n log2 (n +1)
=∞.

Proof. We have
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2
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4 log24
=
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4
; (19)
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4 log2 (4+ 1)
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7 log2 (7 +1)
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8 log28
=
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6
; (20)
 
 


1

2n−1 log2 (2n−1 +1)
+

1

(2n − 1) log2 (2n)
>

2n−1

2n n
=

1

2n
; (21)
 
 


Therefore

S2n
−18 ∑

k=1

2n
−1

1

k log2 (k + 1)
>

1

2

∑

k=1

n

1

k
. (22)

Now for any M > 0, since
{
∑

k=1
n 1

k

}

is not bounded from above, there is n0 ∈N such that
∑

k=1
n0 1

k
> M .

This gives

S2n0−1 >M (23)

and therefore {Sn} is not bounded from above which means
∑

n=1
∞ 1

n log2 (n + 1)
=∞. �
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