Math 314 Fall 2013 Homework 4

Due Wednesday Oct. 9 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $f: X \mapsto Y$ be a function. Critique the following claim.
f is one-to-one if and only if $f(A \cap B)=f(A) \cap f(B)$ for all subsets A, B of X.
If it is true prove it; Otherwise provide a counter-example.
Question 2. Let $x_{0} \in \mathbb{R}$ be an arbitrary real number different from 2 and define x_{n} through

$$
\begin{equation*}
x_{n}=\frac{x_{n-1}}{2}+1 . \tag{1}
\end{equation*}
$$

Does the sequence converge? If so find the limit. Justify your answer.
Question 3. Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be non-negative series with $a_{n}>0, b_{n}>0$ for all $n \in \mathbb{N}$.
a) ($\mathbf{3} \mathbf{~ p t s}$) If $\forall n \in \mathbb{N}, \frac{a_{n+1}}{a_{n}} \leqslant \frac{b_{n+1}}{b_{n}}$, then $\sum_{n=1}^{\infty} b_{n}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
b) (2 pt) Use a) to prove convergence for $\sum_{n=1}^{\infty} a_{n}$ with $a_{1}=1$ and

$$
\begin{equation*}
a_{n}=\frac{1}{4} \frac{2}{5} \cdots \frac{n-1}{n+2} \tag{2}
\end{equation*}
$$

(Hint: use $b_{n}=\frac{1}{n(n+1)}$.)
Question 4. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences of real numbers. Which of the following is the most precise relation between $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)$ and $\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$?
a) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
b) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
c) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$ and it may happen that $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<$ $\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
Justify your answer.
Question 5. Let $\left\{x_{n}\right\}$ be a sequence and $\left\{x_{n_{k}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$. Prove that if $\left\{x_{n_{k}}\right\}$ is not bounded above, then $\left\{x_{n}\right\}$ is not bounded above either.

Question 6. Prove $\sum_{n=1}^{\infty} \frac{1}{n \log _{2}(n+1)}=\infty$.

