Math 314 Fall 2013 Homework 4

DUE WEDNESDAY OCT. 9 5PM IN ASSIGNMENT BOX (CAB 3RD FLOOR)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $f: X \mapsto Y$ be a function. Critique the following claim.

f is one-to-one if and only if $f(A \cap B) = f(A) \cap f(B)$ for all subsets A, B of X.

If it is true prove it; Otherwise provide a counter-example.

Question 2. Let $x_0 \in \mathbb{R}$ be an arbitrary real number different from 2 and define x_n through

$$x_n = \frac{x_{n-1}}{2} + 1. \tag{1}$$

Does the sequence converge? If so find the limit. Justify your answer.

Question 3. Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be non-negative series with $a_n > 0$, $b_n > 0$ for all $n \in \mathbb{N}$.

- a) (3 pts) If $\forall n \in \mathbb{N}, \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, then $\sum_{n=1}^{\infty} b_n$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_n$ converges;
- b) (2 pt) Use a) to prove convergence for $\sum_{n=1}^{\infty} a_n$ with $a_1 = 1$ and

$$a_n = \frac{1}{4} \frac{2}{5} \cdots \frac{n-1}{n+2} \tag{2}$$

(Hint: use $b_n = \frac{1}{n(n+1)}$.)

Question 4. Let $\{x_n\}$, $\{y_n\}$ be sequences of real numbers. Which of the following is the most precise relation between $\limsup_{n\to\infty} (x_n + y_n)$ and $\limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$?

- a) $\limsup_{n\to\infty} (x_n + y_n) = \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
- b) $\limsup_{n\to\infty} (x_n + y_n) \leq \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.
- c) $\limsup_{n\to\infty} (x_n + y_n) \leq \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$ and it may happen that $\limsup_{n\to\infty} (x_n + y_n) < \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$.

Justify your answer.

Question 5. Let $\{x_n\}$ be a sequence and $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$. Prove that if $\{x_{n_k}\}$ is not bounded above, then $\{x_n\}$ is not bounded above either.

Question 6. *Prove* $\sum_{n=1}^{\infty} \frac{1}{n \log_2(n+1)} = \infty$.