Math 314 Fall 2013 Homework 3 Solutions

Due Wednesday Oct. 2 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $x_n = (-1)^n - e^{-n}$ and $E = \{x_n : n \in \mathbb{N}\}\$. ($\mathbb{N} = \{1, 2, 3, ...\}$). Find max E, sup E, min E, inf E*. Justify your answers.*

Solution.

- max E does not exist. Assume the contrary, that is $x_{n_0} = \max E$. Then we have $x_{n_0+2} > x_{n_0}$. Contradiction.
- $\sup E = 1$. Since $1 \geqslant (-1)^n \geqslant (-1)^n e^{-n}$ for all $n \in \mathbb{N}$, 1 is a upper bound. Now for any upper bound b, we have

$$
b \geqslant (-1)^{2k} - e^{-2k} = 1 - e^{-2k}.
$$
\n⁽¹⁾

for all $k \in \mathbb{N}$. Taking limit $k \longrightarrow \infty$, by comparison theorem we have $b \geqslant 1$.

• $\min E = x_1 = -1 - e^{-1}$. We have

$$
x_1 = -1 - e^{-1} \leqslant (-1)^n - e^{-n} \tag{2}
$$

for all $n \in \mathbb{N}$ since $-1 \leqslant (-1)^n, e^{-1} \geqslant e^{-n} \Longrightarrow -e^{-1} \leqslant -e^{-n}$.

• Since min E exists, inf $E = \min E = -1 - e^{-1}$.

Question 2. *Let* $f: X \mapsto Y$ *be a function. Let* $A, B \subseteq X$ *and* $S, T \subseteq Y$ *.*

- *a*) *Prove: If* $A \subseteq B$ *then* $f(A) \subseteq f(B)$ *.*
- *b*) *Prove:* If $S \subseteq T$ *then* $f^{-1}(S) \subseteq f^{-1}(T)$ *.*
- *c*) *Is it true that* $A \subset B$ *implies* $f(A) \subset f(B)$ *? Justify your answer.*
- *d*) *Is it true that* $S \subset T$ *implies* $f^{-1}(S) \subset f^{-1}(T)$? *Justify your answer.*

Proof.

- a) To show $f(A) \subseteq f(B)$ all we need to do is to show that every $y \in f(A)$ also belongs to $f(B)$. Take an arbitrary $y \in f(A)$. By definition of $f(A)$ there is $x \in A$ such that $y = f(x)$. Since $A \subseteq B$ we have $x \in B$. Therefore $y \in f(B)$, by definition of the image $f(B)$.
- b) Take an arbitrary $x \in f^{-1}(S)$. Then by definition $f(x) \in S \subseteq T$. So $f(x) \in T \implies x \in f^{-1}(T)$, by definition of the pre-image f^{-1} .
- c) No. Because f may not be one-to-one. Let $f: \mathbb{N} \to \mathbb{N}$ be defined as $f(n)=1$ for all $n \in \mathbb{N}$. Let $A=\{1,2\}$, $B = \{1, 2, 3\}.$ Then $A \subset B$ but $f(A) = \{1\} = f(B).$
- d) No. Because f may not be onto. Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = \sin x$. Take $S = \{y \in \mathbb{R}: -1 \leq y \leq 1\}$ and $T \{y \in \mathbb{R}: -2 \leq y \leq 2\}$. Then $S \subset T$ but $f^{-1}(S) = \mathbb{R} f^{-1}(T)$ $T = \{ y \in \mathbb{R} : -2 \leq y \leq 2 \}.$ Then $S \subset T$ but $f^{-1}(S) = \mathbb{R} = f^{-1}$ $(T).$

Question 3. *Let* $A \subseteq X, B \subseteq Y$ *and* $f: X \mapsto Y$ *. Prove that*

- *a*) $f(f^{-1}(B)) \subseteq B$.
- *b*) $f^{-1}(f(A)) \supseteq A$.
- *c*) *If* $B \subseteq f(X)$ *, then* $f(f^{-1}(B)) = B$ *.*

Proof.

- a) Take an arbitrary $y \in f(f^{-1}(B))$. By definition of the image $f(\cdot)$ there is $x \in f^{-1}(B)$ such that $y = f(x)$. By definition we have $x \in f^{-1}(B)$ means $y = f(x) \in B$. Therefore $y \in f(f^{-1}(B)) \Longrightarrow y \in B$ so a) is proved.
- b) Take an arbitrary $x \in A$. Then $f(x) \in f(A)$. By definition of the pre-image f^{-1} we have $x \in f^{-1}(f(A))$. So $A \subseteq f^{-1}(f(A)).$
- c) In a) we already proved $f(f^{-1}(B)) \subseteq B$, so to show $f(f^{-1}(B)) = B$ we need to prove further $B \subseteq f(f^{-1}(B))$. Take any $y \in B$. Since $B \subseteq f(X)$ we have $y \in f(X)$. Then there is $x \in X$ such that $f(x) = y$. By definition of f^{-1} , $f(x) = y \in B \Longrightarrow x \in f^{-1}(B)$. This means $y = f(x) \in f(f^{-1}(B))$. So $y \in B \Longrightarrow y \in f(f^{-1}(B))$ which means $B \subseteq f(f^{-1}(B))$.

Question 4. Let $x_n = n^a$ for $a \in \mathbb{R}$. Discuss whether $\lim_{n \to \infty} n^a$ exists or not. If it exists find and prove *the limit. If it does not prove that the limit does not exist.*

Solution. $\lim_{n\to\infty}x_n=0$ when $a<0, =1$ when $a=0, =+\infty$ when $a>0$.

• $a < 0$. For any $\varepsilon > 0$, take $N \in \mathbb{N}$ such that $N > \varepsilon^{1/a}$. Then we have for all $n > N$

$$
|x_n - 0| = n^a < N^a < \varepsilon. \tag{3}
$$

• $a = 0$. In this case $x_n = 1$ for all n. For any $\varepsilon > 0$, take $N = 1$. Then for all $n > N$,

$$
|x_n - 1| = |1 - 1| = 0 < \varepsilon. \tag{4}
$$

• $a > 0$. For any $M \in \mathbb{R}$, take $N > |M|^{1/a}$. Then for all $n > N$,

$$
x_n = n^a > N^a = |M| \ge M. \tag{5}
$$

Question 5. *Calculate the limits of the following sequences:*

$$
x_n = \frac{100 n^2 - 2 n^4}{n^4 + 3 n}, \quad y_n = \sqrt{n+1} - \sqrt{n-1}, \quad z_n = \frac{\sin n^3}{n}.
$$
 (6)

You can use the results from the previous problem.

Solution.

 \bullet x_n . We have

$$
x_n = \frac{100 n^{-2} - 2}{1 + 3 n^{-3}}.\tag{7}
$$

We have $100 n^{-2} \rightarrow 0, -2 \rightarrow -2, 1 \rightarrow 1, 3 n^{-3} \rightarrow 0$ as $n \rightarrow \infty$. Furthermore we have $1 + 3 n^{-3} \longrightarrow 1 \neq 0$. Therefore the limit of the ratio exists and is

$$
\lim_{n \to \infty} x_n = \frac{\lim_{n \to \infty} (100 \, n^{-2} - 2)}{\lim_{n \to \infty} (1 + 3 \, n^{-3})} = -2. \tag{8}
$$

 y_n . Write

$$
y_n = \frac{(\sqrt{n+1} - \sqrt{n-1})(\sqrt{n+1} + \sqrt{n-1})}{(\sqrt{n+1} + \sqrt{n-1})} = n^{-1/2} \frac{2}{\sqrt{1 + n^{-1}} + \sqrt{1 - n^{-1}}}.
$$
\n(9)

As $\sqrt{1 + n^{-1}} + \sqrt{1 - n^{-1}} \longrightarrow 2 \neq 0$, the limit of the ratio exists. Therefore we have

$$
\lim_{n \to \infty} y_n = \left(\lim_{n \to \infty} n^{-1/2}\right) \left(\lim_{n \to \infty} \frac{2}{\sqrt{1 + n^{-1}} + \sqrt{1 - n^{-1}}}\right) = 0.2 = 0. \tag{10}
$$

Remark. For y_n there are many different ways to prove. For example, one can write

$$
|y_n| < \frac{1}{\sqrt{n-1}}.\tag{11}
$$

Now $\forall \varepsilon > 0$, take $N \geqslant \frac{1}{\varepsilon^2}$ $\frac{1}{\varepsilon^2}+1$, then for all $n>N$, we have $|y_n|<\frac{1}{\sqrt{n}}$. $\frac{1}{\sqrt{n-1}} < \frac{1}{\sqrt{N}}$ $\frac{1}{\sqrt{N-1}} \leqslant \varepsilon$. Note that we cannot write "take $N = \frac{1}{c^2}$ $\frac{1}{\epsilon^2} + 1$ " since $1/\epsilon^2$ may not be a natural number.

 z_n . We have for all $n \geqslant 1$,

$$
-\frac{1}{n} \leqslant \frac{\sin n^3}{n} \leqslant \frac{1}{n} \tag{12}
$$

By Squeeze Theorem

$$
\lim_{n \to \infty} \frac{\sin n^3}{n} = 0.
$$
\n(13)

Question 6. *Let* $0 < y_1 < x_1$ *and set*

$$
x_{n+1} = \frac{x_n + y_n}{2}, \qquad y_{n+1} = \sqrt{x_n y_n}, \qquad n \in \mathbb{N}.
$$
 (14)

- *a*) *Prove that* $0 \lt y_n \lt x_n$ *for all* $n \in \mathbb{N}$;
- *b*) *Prove that* y_n *is increasing and bounded above, and* x_n *is decreasing and bounded below;*

 $n \longrightarrow \infty$

- *c*) *Prove that* $0 < x_{n+1} y_{n+1} < (x_1 y_1)/(2^n)$ *for all* $n \in \mathbb{N}$;
- *d*) *Prove that* $\lim_{n\to\infty}x_n$, $\lim_{n\to\infty}y_n$ *both exist are are equal.*

Proof.

- a) We prove by mathematical induction. Let $P(n)$ be the statement $0 < y_n < x_n$.
	- $P(1)$ holds by assumption.
	- Suppose $P(n)$ holds, we try to show $P(n+1)$ also holds. As $x_n, y_n > 0$, we have $x_{n+1} = \frac{x_n + y_n}{2}$ $\frac{y+y_n}{2}$, $y_{n+1} = \sqrt{x_n y_n} > 0$; Next compute

$$
x_{n+1} - y_{n+1} = \frac{x_n + y_n - 2\sqrt{x_n y_n}}{2} = \frac{(\sqrt{x_n} - \sqrt{y_n})^2}{2} \ge 0.
$$
 (15)

Since $x_n > y_n$, $\sqrt{x_n} > \sqrt{y_n}$ therefore $x_{n+1} - y_{n+1} > 0$.

b) As $x_n > y_n$, clearly $y_{n+1} = \sqrt{x_n y_n} > \sqrt{y_n^2} = y_n$ and $x_{n+1} = \frac{x_n + y_n}{2}$ $\frac{y_n}{2} < \frac{x_n + x_n}{2}$ $\frac{2+x_n}{2} = x_n$. For the bounds, combining the facts: y_n increasing, $0 < y_n < x_n$, x_n decreasing, we reach

$$
y_1 \leqslant y_n < x_n \leqslant x_1 \tag{16}
$$

so y_1 and x_1 are the lower/upper bounds respectively.

c) $0 < x_{n+1} - y_{n+1}$ has already been shown in a). For the other inequality, following the argument in a) we have

$$
y_{n+1} = \frac{(\sqrt{x_n} - \sqrt{y_n})^2}{2} < \frac{(\sqrt{x_n} - \sqrt{y_n})(\sqrt{x_n} + \sqrt{y_n})}{2} = \frac{x_n - y_n}{2}.
$$
 (17)

This gives

 x_{n+1} –

$$
x_{n+1} - y_{n+1} < \frac{x_n - y_n}{2} < \frac{x_{n-1} - y_{n-1}}{4} < \dots < \frac{x_1 - y_1}{2^n}.\tag{18}
$$

Remark. One student in Fall 2012 Math 314 discovered a much more clever argument. Since y_n is increasing, we have

$$
x_{n+1} - y_{n+1} < x_{n+1} - y_n = \frac{x_n + y_n}{2} - y_n = \frac{x_n - y_n}{2}.\tag{19}
$$

d) As x_n is decreasing and bounded below by 0, there is $a \in \mathbb{R}$ such that $x_n \longrightarrow a$. On the other hand, we have

$$
y_n < x_n < x_1 \tag{20}
$$

so $\{y_n\}$ is increasing and bounded above. Thus there is $b \in \mathbb{R}$ such that $y_n \longrightarrow b$. By the monotonicity of x_n and y_n and Comparison theorem, we have

$$
y_n \leqslant b \leqslant a \leqslant x_n. \tag{21}
$$

This gives

$$
a - b \leq x_n - y_n < 2^{-(n-1)} |x_1 - y_1|.\tag{22}
$$

As this holds for all $n \in \mathbb{N}$, $a = b$.