Math 314 Fall 2013 Homework 2 Solutions

Due Wednesday Sept. 25 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $E \subseteq \mathbb{R}$. Prove that $\left(E^{c}\right)^{c}=E$.
Proof. We need to show $\left(E^{c}\right)^{c} \subseteq E$ and $E \subseteq\left(E^{c}\right)^{c}$.

- $\quad\left(E^{c}\right)^{c} \subseteq E$.

Take any $x \in\left(E^{c}\right)^{c}$. By definition of complement, we have $x \notin E^{c}$. Now if $x \notin E$, by definition of $E^{c}, x \in E^{c}$. Contradiction. Therefore $x \in E$.

- $E \subseteq\left(E^{c}\right)^{c}$.

Take any $x \in E$. If $x \in E^{c}$ then by definition $x \notin E$, contradiction. Therefore $x \notin E^{c}$ and by definition of complement, $x \in\left(E^{c}\right)^{c}$.

Question 2. Let $A, B \subseteq \mathbb{R}$. Prove that
a) $(A \cap B)^{c}=A^{c} \cup B^{c}$;
b) $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Proof.

a) Two steps.

1. $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$.

Take any $x \in(A \cap B)^{c}$. By definition $x \notin A \cap B$. Now there are two cases.
i. $x \in A$. We claim that $x \notin B$. Assume the contrary. Then $x \in B$. Since $x \in A$ too, $x \in A \cap B$. Contradiction.
ii. $x \notin A$. Then $x \in A^{c} \subseteq A^{c} \cup B^{c}$.
2. $A^{c} \cup B^{c} \subseteq(A \cap B)^{c}$.

Take any $x \in A^{c} \cup B^{c}$. There are two cases:

- $x \in A^{c}$. This gives $x \notin A \Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{c}$;
- $x \in B^{c}$. This gives $x \notin B \Longrightarrow x \notin A \cap B \Longrightarrow x \in(A \cap B)^{c}$.
b) Two steps.

1. $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.

Take any $x \in(A \cup B)^{c}$. Then $x \notin A \cup B$. As $A \subseteq A \cup B, x \notin A \cup B \Longrightarrow x \notin A \Longrightarrow x \in A^{c}$; As $B \subseteq A \cup B, x \notin A \cup B \Longrightarrow x \notin B \Longrightarrow x \in B^{c}$. Therefore $x \in A^{c} \cap B^{c}$.
2. $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$.

Take any $x \in A^{c} \cap B^{c}$. We prove by contradiction. Assume $x \notin(A \cup B)^{c}$. Then $x \in(A \cup B)$ as proved in Question 1. Two cases.

- $\quad x \in A$. Then $x \notin A^{c} \Longrightarrow x \notin A^{c} \cap B^{c} \subseteq A^{c}$. Contradiction.
- $x \in B$. Then $x \notin B^{c} \Longrightarrow x \notin A^{c} \cap B^{c} \subseteq B^{c}$. Contradiction.

Question 3. Find infinitely many nonempty sets of natural numbers

$$
\begin{equation*}
\mathbb{N} \supset S_{1} \supset S_{2} \supset \cdots \tag{1}
\end{equation*}
$$

such that $\cap_{n=1}^{\infty} S_{n}=\varnothing$. You need to rigorously justify your claim.

Solution. Take $S_{n}=\{m \in \mathbb{N}: m>n\}=\{n+1, n+2, \ldots\}$.

- First show S_{n} is nonempty. By construction we have $n+1 \in S_{n}$ so it is nonempty.
- Next show $\mathbb{N} \supset S_{1} \supset S_{2} \supset \cdots$. By definition $S_{1} \subseteq \mathbb{N}$. As $1 \in \mathbb{N}, 1 \notin S_{1}$ we have $S_{1} \subset \mathbb{N}$. Next we show $S_{k+1} \subset S_{k}$ for every $k \in \mathbb{N}$. Take any $m \in S_{k+1}$. By definition of S_{k+1} we must have $m>k+1>k$ therefore $m \in S_{k}$. So $S_{k+1} \subseteq S_{k}$. Since $k+1 \in S_{k}, k+1 \notin S_{k+1}$, we have $S_{k} \neq S_{k+1}$. Therefore $S_{k+1} \subset S_{k}$.
- Finally show $\cap_{n=1}^{\infty} S_{n}=\varnothing$. We prove by contradiction. Assume $\cap_{n=1}^{\infty} S_{n} \neq \varnothing$. Then there is $m \in \cap_{n=1}^{\infty} S_{n}$. However by construction of $S_{m}, m \notin S_{m}$. Contradiction.

Question 4. Prove by definition:

a) $(0,1) \cup(2,3)$ is open;
b) $[0,1] \cup[7,8]$ is closed.

Proof.
a) Let $x \in(0,1) \cup(2,3)$ be arbitrary. Two cases.

- $\quad x \in(0,1)$. The open interval $(0,1)$ satisfies

$$
\begin{equation*}
x \in(0,1) \subseteq(0,1) \cup(2,3) \tag{2}
\end{equation*}
$$

- $\quad x \in(2,3)$. The open interval $(2,3)$ satisfies

$$
\begin{equation*}
x \in(2,3) \subseteq(0,1) \cup(2,3) \tag{3}
\end{equation*}
$$

b) First we have

$$
\begin{equation*}
([0,1] \cup[7,8])^{c}=(-\infty, 0) \cup(1,7) \cup(8, \infty) \tag{4}
\end{equation*}
$$

We will prove that this set is open. Take an arbitrary $x \in([0,1] \cup[7,8])^{c}$. Three cases.

- $\quad x \in(-\infty, 0)$. The open interval $(-\infty, 0)$ satisfies

$$
\begin{equation*}
x \in(-\infty, 0) \subseteq(-\infty, 0) \cup(1,7) \cup(8, \infty) \tag{5}
\end{equation*}
$$

- $\quad x \in(1,7)$. The open interval $(1,7)$ satisfies

$$
\begin{equation*}
x \in(1,7) \subseteq(-\infty, 0) \cup(1,7) \cup(8, \infty) ; \tag{6}
\end{equation*}
$$

- $\quad x \in(8, \infty)$. The open interval $(8, \infty)$ satisfies

$$
\begin{equation*}
x \in(8, \infty) \subseteq(-\infty, 0) \cup(1,7) \cup(8, \infty) \tag{7}
\end{equation*}
$$

Question 5. Let $E:=\left\{(-1)^{n}+e^{-n}: n \in \mathbb{N}\right\}$. Find $\max E, \sup E, \min E, \inf E$. Justify your answers.

Solution.

- $\max E=1+e^{-2}$. To justify, we show that

1. $1+e^{-2} \in E$. This is clear since $1+e^{-2}=(-1)^{2}+e^{-2}$.
2. $\forall a \in E, 1+e^{-2} \geqslant a$. Since $a \in E$, there is $n \in \mathbb{N}$ such that $a=(-1)^{n}+e^{-n}$. There are two cases:
a) n odd. In this case $a=-1+e^{-n} \leqslant-1+1=0<1+e^{-2}$.
b) n even. In this case $a=1+e^{-n} \leqslant 1+e^{-2}$ since $n \geqslant 2$.

- Since $\max E$ exists, we have $\sup E=\max E=1+e^{-2}$.
- min E does not exist. To see this, assume the contrary. Then there is $n_{0} \in \mathbb{N}$ such that $(-1)^{n_{0}}+e^{-n_{0}} \leqslant$ $(-1)^{n}+e^{-n}$ for all $n \in \mathbb{N}$. Take $n=n_{0}+2$. We have

$$
\begin{equation*}
(-1)^{n}+e^{-n}=(-1)^{n_{0}}+e^{-n_{0}-2}<(-1)^{n_{0}}+e^{-n_{0}} \tag{8}
\end{equation*}
$$

Contradiction.

- $\quad \inf E=-1$. To justify, we need to show

1. $-1 \leqslant(-1)^{n}+e^{-n}$ for all $n \in \mathbb{N}$. We have $(-1)^{n}+e^{-n} \geqslant(-1)^{n} \geqslant-1$ for all $n \in \mathbb{N}$ so this part is proved.
2. Any $b>-1$ is not a lower bound. Let $b>-1$ be arbitrary. Take $n>-\ln (b+1)$, then

$$
\begin{equation*}
(-1)^{2 n+1}+e^{-(2 n+1)}<-1+e^{-n}<-1+(b+1)=b . \tag{9}
\end{equation*}
$$

Therefore b is not a lower bound of E.
Question 6. Let $A, B \subseteq \mathbb{R}$. Define their sum as the set $A+B:=\{x+y \mid x \in A, y \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B, \inf (A+B)=\inf A+\inf B$.

Proof. To show $\sup (A+B)=\sup A+\sup B$, we need to show

1. $\sup A+\sup B \geqslant z$ for every $z \in A+B$. Take any $z \in A+B$. Then there are $x \in A, y \in B$ such that $z=x+y$. By definition of sup we have $\sup A \geqslant x, \sup B \geqslant y$. Consequently $\sup A+\sup B \geqslant z$.
2. If $b \in \mathbb{R}$ satisfies $b \geqslant z$ for every $z \in A+B$, then $b \geqslant \sup A+\sup B$. By a theorem in the lecture notes, for every $\varepsilon>0$, there is $x \in A, y \in B$ such that $x>\sup A-\varepsilon / 2, y>\sup B-\varepsilon / 2$. Thus for every $\varepsilon>0$, $b \geqslant x+y>\sup A+\sup B-\varepsilon$. Consequently $b \geqslant \sup A+\sup B$.
To show $\inf (A+B)=\inf A+\inf B$, we need to show
3. inf $A+\inf B \leqslant z$ for every $z \in A+B$. Take any $z \in A+B$, there are $x \in A, y \in B$ such that $z=x+y$. By definition of inf we have $x \geqslant \inf A, y \geqslant \inf B$. So inf $A+\inf B \leqslant z$.
4. If $b \in \mathbb{R}$ satisfies $b \leqslant z$ for every $z \in A+b$, then $b \leqslant \inf A+\inf B$. By a theorem in the lecture notes, for every $\varepsilon>0$, there is $x \in A, y \in B$ such that $x<\inf A+\varepsilon / 2, y<\inf B+\varepsilon / 2$. Thus for every $\varepsilon>0$, $b \leqslant x+y<\inf A+\inf B+\varepsilon$. Consequently $b \leqslant \inf A+\inf B$.
