Math 314 Fall 2013 Homework 2 Solutions

DUE WEDNESDAY SEPT. 25 5PM IN ASSIGNMENT Box (CAB 3rD FLOOR)

e There are 6 problems, each 5 points. Total 30 points.

e Please justify all your answers through proof or counterexample.
Question 1. Let E CIR. Prove that (E°)°=E.

Proof. We need to show (E°)°C FE and FE C (E)°.

o (E9°CE.
Take any x € (E€)¢. By definition of complement, we have x ¢ E¢. Now if = ¢ E, by definition of
E°, x € E°. Contradiction. Therefore x € F.

o EC(E9-.
Take any x € E. If € E° then by definition « ¢ E, contradiction. Therefore x ¢ E°€ and by definition

of complement, x € (E)°. O

Question 2. Let A, B CRR. Prove that
a) (AN B)¢= A°U B¢;
b) (AUB)“=A°NB°.

Proof.
a) Two steps.

1. (AN B)¢C A°U B*.
Take any x € (AN B)°. By definition « ¢ AN B. Now there are two cases.

i. z€ A. We claim that « ¢ B. Assume the contrary. Then x € B. Since x € A too, z € AN B.
Contradiction.

ii. z¢ A. Then x € A°C A°U B

2. A°UB°C (AN B)-.
Take any x € AU B¢. There are two cases:

o zxcA° Thisgivesz¢ A— ¢ ANB=—x€(ANB)S
e z€B Thisgivesc¢ B=x¢ ANB=—x€ (ANDB)".
b) Two steps.

1. (AUB)“C A°N B
Take any z € (AUB)°. Then x¢ AUB. As ACAUB, ¢ AUB=u2¢ A= 1€ A% As
BCAUB, ¢ AUB= x¢ B=>x € B°. Therefore x € A°N B°.

2. A°“NB°C (AUB)°.
Take any x € AN B°. We prove by contradiction. Assume x¢ (AU B)¢. Then z € (AU B)
as proved in Question 1. Two cases.

o zcA Thenx¢ A°— ¢ A°N B°C A°. Contradiction.
e x€B. Then x¢ B°=x ¢ A°N B° C B°. Contradiction. O

Question 3. Find infinitely many nonempty sets of natural numbers
NDSIDSD- (1)

such that Np=1Sn,=9. You need to rigorously justify your claim.
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Solution. Take S, ={meN:m>n}={n+1,n+2,...}.
e First show S, is nonempty. By construction we have n+ 1€ S, so it is nonempty.

e Next show N D S; D S2D . By definition S; CN. As 1 €N, 1¢ S; we have S; C N. Next we show
Si4+1 C Sk for every k € N. Take any m € Si+1. By definition of Sg4+1 we must have m >k + 1>k
therefore m € Sk. So Sk4+1C Sk. Since k+1€ Sk, k+1¢ Sk41, we have Si # Sk+1. Therefore Sy 1 C Sk.

e Finally show Np21S,, =@. We prove by contradiction. Assume N515,# &. Then there is m € N5L1S,,.
However by construction of Sy,, m ¢ Sy,. Contradiction.
Question 4. Prove by definition:
a) (0,1)U(2,3) is open;
b) [0,1]U][7,8] is closed.
Proof.
a) Let x € (0,1)U(2,3) be arbitrary. Two cases.
e 12€(0,1). The open interval (0,1) satisfies
z€(0,1)C(0,1)U(2,3). (2)
e 1€(2,3). The open interval (2,3) satisfies
x€(2,3)C(0,1)U(2,3). (3)
b) First we have
([0,1)U7,8])¢ = (—00,0) U (1,7)U(8, c0). (4)
We will prove that this set is open. Take an arbitrary x € ([0,1]U[7,8])¢. Three cases.
e 1€(—00,0). The open interval (—oo, 0) satisfies
€ (=00,0) € (=00,0)U(1,7) U(8,00); (5)
e 1¢c(1,7). The open interval (1,7) satisfies
z€(1,7) € (=00,0) U(1,7) U (8,00); (6)
e 1 €(8,00). The open interval (8, 00) satisfies

z € (8,00)C (—00,0)U(1,7)U(8,00). (7)

Question 5. Let E:={(—1)"+e ™ neN}. Find max E,sup F, min E,inf E. Justify your answers.

Solution.
e maxFE=1+e 2 To justify, we show that
1. 1+e 2€ E. This is clear since 1 +e 2= (—1)2+e72
2. Ya€ E,1+e 2>a. Since a € E, there is n € N such that a=(—1)"+e~™. There are two cases:
a) n odd. In this case a=—1+e "< -1+1=0<1+e 2
b) n even. In this case a=14+e " <1+ e~2 since n > 2.
e Since max F exists, we have sup F=max E=1+¢72

e min F does not exist. To see this, assume the contrary. Then there is ng € N such that (—1)"0+e"0 <
(=1)"+e ™ for all n € N. Take n=mno+2. We have

() e = (1) e < () e ®
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Contradiction.
e inf F=—1. To justify, we need to show

1. =1<(=1)"+e ™ for all n€N. We have (—1)"+e "> (—1)"> —1 for all n € N so this part
is proved.

2. Any b> —1 is not a lower bound. Let b> —1 be arbitrary. Take n > —In (b+ 1), then
(=12t p et o qye <14 (b+1)=b. (9)
Therefore b is not a lower bound of E.

Question 6. Let A, B C R. Define their sum as the set A+ B:={zx + y| z € A, y € B}. Prove that
sup (A+ B)=sup A+sup B, inf (A+ B)=inf A+ inf B.

Proof. To show sup (A+ B)=sup A + sup B, we need to show

1. sup A+sup B >z for every z € A+ B. Take any z € A+ B. Then there are x € A, y € B such that
z=x +y. By definition of sup we have sup A > x,sup B > y. Consequently sup A+ sup B > z.

2. If beR satisfies b > z for every z € A+ B, then b >sup A+ sup B. By a theorem in the lecture notes,
for every € >0, there is z € A, y € B such that 2 >sup A —e/2, y >sup B — /2. Thus for every & >0,
b>x+y>supA+sup B—ec. Consequently b>sup A+ sup B.

To show inf (A + B) =inf A + inf B, we need to show

1. inf A+inf B< z for every z € A+ B. Take any z € A+ B, there are x € A, y € B such that z=x+ y.
By definition of inf we have x >inf A, y > inf B. So inf A+ inf B < z.

2. If b € R satisfies b < z for every z € A+ b, then b <inf A+ inf B. By a theorem in the lecture notes,
for every € >0, there is x € A, y € B such that z <inf A+¢/2,y <inf B+ /2. Thus for every € > 0,
b<z+y<inf A+inf B+ ¢e. Consequently b<inf A+ inf B. d



