
Math 314 Fall 2013 Homework 2 Solutions

Due Wednesday Sept. 25 5pm in Assignment Box (CAB 3rd Floor)

• There are 6 problems, each 5 points. Total 30 points.

• Please justify all your answers through proof or counterexample.

Question 1. Let E ⊆R. Prove that (Ec)c = E.

Proof. We need to show (Ec)c ⊆E and E ⊆ (Ec)c.

• (Ec)c ⊆E.
Take any x∈ (Ec)c. By definition of complement, we have x � Ec. Now if x � E, by definition of

Ec, x∈Ec. Contradiction. Therefore x∈E.

• E ⊆ (Ec)c.
Take any x∈E. If x∈Ec then by definition x� E, contradiction. Therefore x� Ec and by definition

of complement, x∈ (Ec)c. �

Question 2. Let A, B ⊆R. Prove that

a) (A∩B)c = Ac∪Bc;

b) (A∪B)c = Ac∩Bc.

Proof.

a) Two steps.

1. (A∩B)c ⊆Ac∪Bc.
Take any x∈ (A∩B)c. By definition x � A∩B. Now there are two cases.

i. x∈A. We claim that x� B. Assume the contrary. Then x∈B. Since x∈A too, x∈A∩B.
Contradiction.

ii. x � A. Then x∈Ac ⊆Ac∪Bc.

2. Ac∪Bc ⊆ (A∩B)c.

Take any x∈Ac∪Bc. There are two cases:

• x∈Ac. This gives x � A� x � A∩B� x∈ (A∩B)c;

• x∈Bc. This gives x � B� x � A∩B� x∈ (A∩B)c.

b) Two steps.

1. (A∪B)c ⊆Ac∩Bc.
Take any x∈ (A∪B)c. Then x � A∪B. As A ⊆A∪B, x � A∪B� x � A� x∈Ac; As

B ⊆A∪B, x � A∪B� x � B� x∈Bc. Therefore x∈Ac∩Bc.

2. Ac∩Bc ⊆ (A∪B)c .

Take any x∈Ac∩Bc. We prove by contradiction. Assume x � (A∪B)c. Then x∈ (A∪B)
as proved in Question 1. Two cases.

• x∈A. Then x � Ac� x � Ac∩Bc ⊆Ac. Contradiction.

• x∈B. Then x � Bc� x � Ac∩Bc ⊆Bc. Contradiction. �

Question 3. Find infinitely many nonempty sets of natural numbers

N⊃S1⊃S2⊃� (1)

such that ∩n=1
∞ Sn = ∅. You need to rigorously justify your claim.
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Solution. Take Sn = {m∈N: m > n}= {n +1, n + 2,
 }.

• First show Sn is nonempty. By construction we have n + 1∈Sn so it is nonempty.

• Next show N⊃ S1⊃ S2⊃� . By definition S1⊆N. As 1∈N, 1 � S1 we have S1⊂N. Next we show
Sk+1 ⊂ Sk for every k ∈N. Take any m ∈ Sk+1. By definition of Sk+1 we must have m > k + 1 > k

therefore m∈Sk. So Sk+1⊆Sk. Since k+1∈Sk, k+1� Sk+1, we have Sk� Sk+1. Therefore Sk+1⊂Sk.

• Finally show ∩n=1
∞ Sn=∅. We prove by contradiction. Assume ∩n=1

∞ Sn� ∅. Then there is m∈∩n=1
∞ Sn.

However by construction of Sm, m � Sm. Contradiction.

Question 4. Prove by definition:

a) (0, 1)∪ (2, 3) is open;

b) [0, 1]∪ [7, 8] is closed.

Proof.

a) Let x∈ (0, 1)∪ (2, 3) be arbitrary. Two cases.

• x∈ (0, 1). The open interval (0, 1) satisfies

x∈ (0, 1)⊆ (0, 1)∪ (2, 3). (2)

• x∈ (2, 3). The open interval (2, 3) satisfies

x∈ (2, 3)⊆ (0, 1)∪ (2, 3). (3)

b) First we have

([0, 1]∪ [7, 8])c =(−∞, 0)∪ (1, 7)∪ (8,∞). (4)

We will prove that this set is open. Take an arbitrary x∈ ([0, 1]∪ [7, 8])c. Three cases.

• x∈ (−∞, 0). The open interval (−∞, 0) satisfies

x∈ (−∞, 0)⊆ (−∞, 0)∪ (1, 7)∪ (8,∞); (5)

• x∈ (1, 7). The open interval (1, 7) satisfies

x∈ (1, 7)⊆ (−∞, 0)∪ (1, 7)∪ (8,∞); (6)

• x∈ (8,∞). The open interval (8,∞) satisfies

x∈ (8,∞)⊆ (−∞, 0)∪ (1, 7)∪ (8,∞). (7)

�

Question 5. Let E8 {(−1)n + e−n: n∈N}. Find maxE, supE, minE, inf E. Justify your answers.

Solution.

• maxE =1 + e−2. To justify, we show that

1. 1+ e−2∈E. This is clear since 1+ e−2 =(−1)2 + e−2.

2. ∀a∈E,1+e−2>a. Since a∈E, there is n∈N such that a=(−1)n +e−n. There are two cases:

a) n odd. In this case a =−1 + e−n 6−1+ 1 =0 < 1+ e−2.

b) n even. In this case a = 1 + e−n 6 1+ e−2 since n> 2.

• Since maxE exists, we have supE =maxE = 1+ e−2.

• minE does not exist. To see this, assume the contrary. Then there is n0∈N such that (−1)n0+e−n06

(−1)n + e−n for all n∈N. Take n = n0 +2. We have

(−1)n + e−n = (−1)n0 + e−n0−2 < (−1)n0 + e−n0 (8)
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Contradiction.

• inf E =−1. To justify, we need to show

1. −1 6 (−1)n + e−n for all n∈N. We have (−1)n + e−n > (−1)n >−1 for all n∈N so this part
is proved.

2. Any b >−1 is not a lower bound. Let b >−1 be arbitrary. Take n >−ln (b +1), then

(−1)2n+1 + e−(2n+1) <−1+e−n <−1+ (b + 1) = b. (9)

Therefore b is not a lower bound of E.

Question 6. Let A, B ⊆ R. Define their sum as the set A + B 8 {x + y P x ∈ A, y ∈ B}. Prove that

sup (A +B)= supA+ supB, inf (A+ B)= inf A+ inf B.

Proof. To show sup (A +B)= supA+ supB, we need to show

1. supA + sup B > z for every z ∈A + B. Take any z ∈A + B. Then there are x ∈ A, y ∈ B such that
z =x + y. By definition of sup we have supA> x, supB > y. Consequently supA+ supB > z.

2. If b∈R satisfies b> z for every z ∈A+B, then b> supA+ supB. By a theorem in the lecture notes,
for every ε > 0, there is x∈A, y ∈B such that x > supA− ε/2, y > supB − ε/2. Thus for every ε > 0,
b > x+ y > supA + supB − ε. Consequently b > supA+ supB.

To show inf (A+ B)= inf A + inf B, we need to show

1. inf A + inf B 6 z for every z ∈A+B. Take any z ∈A+B, there are x∈A, y ∈B such that z = x+ y.
By definition of inf we have x> inf A, y > inf B. So inf A+ inf B 6 z.

2. If b∈R satisfies b 6 z for every z ∈A + b, then b 6 inf A + inf B. By a theorem in the lecture notes,
for every ε > 0, there is x∈A, y ∈B such that x < inf A + ε/2, y < inf B + ε/2. Thus for every ε > 0,
b 6 x+ y < inf A+ inf B + ε. Consequently b6 inf A+ inf B. �
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