Math 314 Fall 2013 Homework 2 Solutions

Due Wednesday Sept. 25 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $E \subseteq \mathbb{R}$. Prove that $(E^c)^c = E$.

Proof. We need to show $(E^c)^c \subseteq E$ and $E \subseteq (E^c)^c$.

- (E^c)^c ⊆ E. Take any x ∈ (E^c)^c. By definition of complement, we have x ∉ E^c. Now if x ∉ E, by definition of E^c, x ∈ E^c. Contradiction. Therefore x ∈ E.
- $E \subseteq (E^c)^c$.

Take any $x \in E$. If $x \in E^c$ then by definition $x \notin E$, contradiction. Therefore $x \notin E^c$ and by definition of complement, $x \in (E^c)^c$.

Question 2. Let $A, B \subseteq \mathbb{R}$. Prove that

- a) $(A \cap B)^c = A^c \cup B^c;$
- $b) \ (A \cup B)^c = A^c \cap B^c.$

Proof.

- a) Two steps.
 - 1. $(A \cap B)^c \subseteq A^c \cup B^c$.
 - Take any $x \in (A \cap B)^c$. By definition $x \notin A \cap B$. Now there are two cases.
 - i. $x \in A$. We claim that $x \notin B$. Assume the contrary. Then $x \in B$. Since $x \in A$ too, $x \in A \cap B$. Contradiction.
 - ii. $x \notin A$. Then $x \in A^c \subseteq A^c \cup B^c$.
 - 2. $A^c \cup B^c \subseteq (A \cap B)^c$.

Take any $x \in A^c \cup B^c$. There are two cases:

- $x \in A^c$. This gives $x \notin A \Longrightarrow x \notin A \cap B \Longrightarrow x \in (A \cap B)^c$;
- $x \in B^c$. This gives $x \notin B \Longrightarrow x \notin A \cap B \Longrightarrow x \in (A \cap B)^c$.
- b) Two steps.
 - 1. $(A \cup B)^c \subseteq A^c \cap B^c$.

Take any $x \in (A \cup B)^c$. Then $x \notin A \cup B$. As $A \subseteq A \cup B$, $x \notin A \cup B \Longrightarrow x \notin A \Longrightarrow x \in A^c$; As $B \subseteq A \cup B$, $x \notin A \cup B \Longrightarrow x \notin B \Longrightarrow x \in B^c$. Therefore $x \in A^c \cap B^c$.

2. $A^c \cap B^c \subseteq (A \cup B)^c$.

Take any $x \in A^c \cap B^c$. We prove by contradiction. Assume $x \notin (A \cup B)^c$. Then $x \in (A \cup B)$ as proved in Question 1. Two cases.

- $x \in A$. Then $x \notin A^c \Longrightarrow x \notin A^c \cap B^c \subseteq A^c$. Contradiction.
- $x \in B$. Then $x \notin B^c \Longrightarrow x \notin A^c \cap B^c \subseteq B^c$. Contradiction.

Question 3. Find infinitely many nonempty sets of natural numbers

$$\mathbb{N} \supset S_1 \supset S_2 \supset \cdots \tag{1}$$

such that $\cap_{n=1}^{\infty} S_n = \emptyset$. You need to rigorously justify your claim.

Solution. Take $S_n = \{m \in \mathbb{N} : m > n\} = \{n + 1, n + 2, ...\}.$

- First show S_n is nonempty. By construction we have $n+1 \in S_n$ so it is nonempty.
- Next show $\mathbb{N} \supset S_1 \supset S_2 \supset \cdots$. By definition $S_1 \subseteq \mathbb{N}$. As $1 \in \mathbb{N}$, $1 \notin S_1$ we have $S_1 \subset \mathbb{N}$. Next we show $S_{k+1} \subset S_k$ for every $k \in \mathbb{N}$. Take any $m \in S_{k+1}$. By definition of S_{k+1} we must have m > k+1 > k therefore $m \in S_k$. So $S_{k+1} \subseteq S_k$. Since $k+1 \in S_k$, $k+1 \notin S_{k+1}$, we have $S_k \neq S_{k+1}$. Therefore $S_{k+1} \subset S_k$.
- Finally show $\bigcap_{n=1}^{\infty} S_n = \emptyset$. We prove by contradiction. Assume $\bigcap_{n=1}^{\infty} S_n \neq \emptyset$. Then there is $m \in \bigcap_{n=1}^{\infty} S_n$. However by construction of S_m , $m \notin S_m$. Contradiction.

Question 4. Prove by definition:

- a) $(0,1) \cup (2,3)$ is open;
- b) $[0,1] \cup [7,8]$ is closed.

Proof.

- a) Let $x \in (0, 1) \cup (2, 3)$ be arbitrary. Two cases.
 - $x \in (0, 1)$. The open interval (0, 1) satisfies

$$x \in (0,1) \subseteq (0,1) \cup (2,3). \tag{2}$$

• $x \in (2,3)$. The open interval (2,3) satisfies

$$x \in (2,3) \subseteq (0,1) \cup (2,3). \tag{3}$$

b) First we have

$$([0,1] \cup [7,8])^c = (-\infty,0) \cup (1,7) \cup (8,\infty).$$
(4)

We will prove that this set is open. Take an arbitrary $x \in ([0,1] \cup [7,8])^c$. Three cases.

• $x \in (-\infty, 0)$. The open interval $(-\infty, 0)$ satisfies

$$x \in (-\infty, 0) \subseteq (-\infty, 0) \cup (1, 7) \cup (8, \infty); \tag{5}$$

• $x \in (1,7)$. The open interval (1,7) satisfies

$$x \in (1,7) \subseteq (-\infty,0) \cup (1,7) \cup (8,\infty);$$
(6)

• $x \in (8, \infty)$. The open interval $(8, \infty)$ satisfies

$$x \in (8,\infty) \subseteq (-\infty,0) \cup (1,7) \cup (8,\infty). \tag{7}$$

Question 5. Let $E := \{(-1)^n + e^{-n} : n \in \mathbb{N}\}$. Find $\max E$, $\sup E$, $\min E$, $\inf E$. Justify your answers.

Solution.

- $\max E = 1 + e^{-2}$. To justify, we show that
 - 1. $1 + e^{-2} \in E$. This is clear since $1 + e^{-2} = (-1)^2 + e^{-2}$.
 - 2. $\forall a \in E, 1 + e^{-2} \ge a$. Since $a \in E$, there is $n \in \mathbb{N}$ such that $a = (-1)^n + e^{-n}$. There are two cases:
 - a) *n* odd. In this case $a = -1 + e^{-n} \leq -1 + 1 = 0 < 1 + e^{-2}$.
 - b) *n* even. In this case $a = 1 + e^{-n} \leq 1 + e^{-2}$ since $n \geq 2$.
- Since max E exists, we have $\sup E = \max E = 1 + e^{-2}$.
- min *E* does not exist. To see this, assume the contrary. Then there is $n_0 \in \mathbb{N}$ such that $(-1)^{n_0} + e^{-n_0} \leq (-1)^n + e^{-n}$ for all $n \in \mathbb{N}$. Take $n = n_0 + 2$. We have

$$(-1)^{n} + e^{-n} = (-1)^{n_0} + e^{-n_0 - 2} < (-1)^{n_0} + e^{-n_0}$$

$$\tag{8}$$

Contradiction.

- $\inf E = -1$. To justify, we need to show
 - 1. $-1 \leq (-1)^n + e^{-n}$ for all $n \in \mathbb{N}$. We have $(-1)^n + e^{-n} \geq (-1)^n \geq -1$ for all $n \in \mathbb{N}$ so this part is proved.
 - 2. Any b > -1 is not a lower bound. Let b > -1 be arbitrary. Take $n > -\ln(b+1)$, then

$$(-1)^{2n+1} + e^{-(2n+1)} < -1 + e^{-n} < -1 + (b+1) = b.$$
(9)

Therefore b is not a lower bound of E.

Question 6. Let $A, B \subseteq \mathbb{R}$. Define their sum as the set $A + B := \{x + y | x \in A, y \in B\}$. Prove that $\sup (A + B) = \sup A + \sup B$, $\inf (A + B) = \inf A + \inf B$.

Proof. To show $\sup (A + B) = \sup A + \sup B$, we need to show

- 1. $\sup A + \sup B \ge z$ for every $z \in A + B$. Take any $z \in A + B$. Then there are $x \in A, y \in B$ such that z = x + y. By definition of sup we have $\sup A \ge x$, $\sup B \ge y$. Consequently $\sup A + \sup B \ge z$.
- 2. If $b \in \mathbb{R}$ satisfies $b \ge z$ for every $z \in A + B$, then $b \ge \sup A + \sup B$. By a theorem in the lecture notes, for every $\varepsilon > 0$, there is $x \in A$, $y \in B$ such that $x > \sup A \varepsilon/2$, $y > \sup B \varepsilon/2$. Thus for every $\varepsilon > 0$, $b \ge x + y > \sup A + \sup B \varepsilon$. Consequently $b \ge \sup A + \sup B$.

To show $\inf(A+B) = \inf A + \inf B$, we need to show

- 1. $\inf A + \inf B \leq z$ for every $z \in A + B$. Take any $z \in A + B$, there are $x \in A, y \in B$ such that z = x + y. By definition of \inf we have $x \ge \inf A, y \ge \inf B$. So $\inf A + \inf B \leq z$.
- 2. If $b \in \mathbb{R}$ satisfies $b \leq z$ for every $z \in A + b$, then $b \leq \inf A + \inf B$. By a theorem in the lecture notes, for every $\varepsilon > 0$, there is $x \in A$, $y \in B$ such that $x < \inf A + \varepsilon/2$, $y < \inf B + \varepsilon/2$. Thus for every $\varepsilon > 0$, $b \leq x + y < \inf A + \inf B + \varepsilon$. Consequently $b \leq \inf A + \inf B$.